216 research outputs found

    Blood pressure profile in Nigerian children

    Get PDF
    Objective: To observe blood pressure (BP) pattern and its correlates in primary school children of northern Nigeria.Design: Sitting BP and pulse were measured in quadruplicate, then repeated after four weeks in 1,721 healthy children aged five to 16 years. Body weight and height were also measured in their school environment.Setting: Primary schools located in three communities in Zaria Local Government Area (LGA) of Kaduna State, Nigeria. The communities were Tudun Wada (University community of migrants with some indigenous Hausa settlers), Zaria City (traditional Hausa community) and Zaria Kewaye (a rural Hausa settlement).Results: BP rose with age. However, BP levels particularly systolic was highest in children from Tudun Wada (TW) (urban), followed by those from Zaria city (ZC) (semi urban), and Zaria Kewaye (ZK) (rural). The mean systolic/diastolic BP (mmHg) were: 99/61, 94/62 and89/60 in children aged five to ten years; and 112/69, 109/68 and 107/68 in those older than 10 years respectively. The differences in BP levels were evident even as early as the age of five years and appears largely independent of physical stature and gender.Conclusion: These observations suggest that place of residence and ethnicity may be important factors in the progression of BP with age in some children in northern Nigeria

    Improving the biomethane yield from food waste by boosting hydrogenotrophic methanogenesis

    Get PDF
    Anaerobic digestion of food waste is usually impacted by high levels of VFAs, resulting in low pH and inhibited methane production from acetate (acetoclastic methanogenesis); however, this could be harnessed for improving methane production via hydrogenotrophic methanogenesis (biomethanation). In this study, batch anaerobic digestion of food waste was conducted to enhance biomethanation by supplying hydrogen gas (H2), using a gas mixture of 5%-H2 and 95%-N2. The addition of H2 influenced a temporal microbial shift in substrate utilisation from dissolved organic nutrients to H2 and CO2 and was perceived to have enhanced the hydrogenotrophic methanogenic activity. As a result, with the release of hydrogen as degradation progressed (secondary fermentation) hydrogenotrophic methanogenesis was further enriched. This resulted in an enhancement of the upgrading of the biogas, with a 12.1% increase in biomethane (from 417.6 to 468.3 NmL-CH4/gVSadded) and 38.9% reduction in CO2 (from 227.1 to 138.7 NmL-CO2/gVSadded). Furthermore, the availability of hydrogen gas at the start of the process promoted faster propionate degradation, by the enhanced activity of the H2-utilisers, thereby, reducing likely propionate-induced inhibitions. The high level of acidification from VFAs production helped to prevent excessive pH increases from the enhanced hydrogenotrophic methanogenic activity. Therefore, it was found that the addition of hydrogen gas to AD reactors treating food waste showed great potential for enhanced methane yield and biogas upgrade, supported by VFAs-induced pH buffer. This creates the possibility to optimise hydrogenotrophic methanogenesis towards obtaining biogas of the right quality for injection into the gas grid

    Particle size, inoculum-to-substrate ratio and nutrient media effects on biomethane yield from food waste

    Get PDF
    This study investigates the effects of particle size reduction at different inoculum-to-substrate ratios and nutrient media supplementation on the assessment of biomethane production from food waste, under batch mesophilic conditions. Two different food waste samples were used and the best method for testing biomethane potential was chosen based on their characterisation and methane yields. Results obtained indicate that Inoculum-to-substrate ratios of 3:1 and 4:1 helped to stabilise test reactors with smaller particle sizes of 1 mm and 2 mm, respectively. Consequently, an overall biomethane yield increase of 38% was reported (i.e., from 393 NmLCH4 gVS−1added to 543 NmLCH4 gVS−1added). This could potentially imply a better assessment of energy outputs from anaerobic digestion of food waste (i.e., 43.5% higher energy output as electricity from biogas, using commercial scale Combined Heat and Power (CHP) units). Although nutrient media supplementation did not enhance methane yield from optimum inoculum-to-substrate ratio (3:1) and particle size (1 mm), it was found that its application helped to stabilise food waste digestion by avoiding volatile fatty acids accumulation and high propionic-to-acetic acid ratio, consequently, improving the overall test kinetics with 91% lag time reduction from 5.6 to 0.5 days. This work supports the importance of key variables to consider during biomethane potential tests used for assessing methane yields from food waste samples, which in return can potentially increase the throughput of anaerobic digestion system processing food waste, to further increase the overall energy output

    The Impact of Enzymatic Hydrolysis of Sewage Sludge as a Pre-treatment for Dark Fermentation

    Get PDF
    For many years, sewage sludge has been processed for methane production in anaerobic digestion reactors at wastewater treatment plants around the world. Sewage sludge is produced in large quantities and is rich in biodegradable organic materials, from which sugars (e.g., glucose) can be produced, recovered and used as a substrate to support hydrogen production through the Dark Fermentation (DF) process. DF is one of several methods used for bio-hydrogen production, whereby fermentative bacteria are used to hydrolyse organic substrates to produce hydrogen gas. Carbohydrates (sugars) is one of the main fermentable substrates for hydrogen production, and they are considered the most favourable substrate for fermentative bacteria (e.g., Clostridium bacteria). Although sewage sludge is rich in organic materials, still the complexity of its structure and low carbon/nitrogen ratio limits the bio-hydrogen production via DF processes. Therefore, this paper addresses the impact of Enzymatic Hydrolysis (EH) as a pre-treatment of sewage sludge on enhancing the biodegradability and glucose content in sewage sludge. The result shows that using the EH process as pre-treatment for sewage sludge, enhanced the glucose content in sewage sludge and converted some of the macro sewage flocs to easy digestible micro flocs (glucose). Therefore, the substrate being more favourable and easier to digest by bacteria in the DF reactor, enhanced the production of hydrogen and VFAs. More research needs to be done to find the optimum enzyme dosage, initial substrate concentration and operation temperature (especially when the enzyme is used inside the DF reactor)

    Assessing Different Inoculum Treatments for Improved Production of Hydrogen through Dark Fermentation

    Get PDF
    Hydrogen gas (H2) is an energy carrier that does not generate carbon dioxide emissions during combustion, but several processes in use for its production demand high energy inputs associated with fossil fuels and greenhouse emissions. Biological processes, such as dark fermentation (DF), have the potential to remove the dependency on fossil fuels in H2 production. DF is a process that encourages fermentative bacteria to ferment organic substrates to produce H2 as a truly clean energy carrier, but its success depends on removing the presence of competing H2−consuming microorganisms in the inoculum consortia. This paper addresses a strategy to enhance H2 production from different types of substrates by testing inoculum pre-treatment processes to inactivate H2−consuming bacteria, including acid-shock (pH 3), basic-shock (pH 10) and heat-shock (115 °C) methods. Digestate from anaerobic digesters processing sewage sludge was used to produce pre-treated inocula, which were subsequently tested in a batch bio-H2 potential (BHP) test using glucose as a substrate. The results show that heat-shock pre-treatment was the best method, reporting a H2 yield of 191.8 mL-H2/gVS added (the untreated inoculum reported 170.91 mL-H2/gVS added). Glucose conversion data show a high concentration of butyric acid in both treated and untreated inocula during BHP tests, which indicate that the butyrate pathway for H2 production was dominant; shifting this to the formate route could further enhance net H2 production. A standardised inoculum-conditioning method can help to consistently assess the biohydrogen potential of suitable feedstock for DF and maximise H2 yields

    Relationship between Antibody Susceptibility and Lipopolysaccharide O-Antigen Characteristics of Invasive and Gastrointestinal Nontyphoidal Salmonellae Isolates from Kenya

    Get PDF
    Background: Nontyphoidal Salmonellae (NTS) cause a large burden of invasive and gastrointestinal disease among young children in sub-Saharan Africa. No vaccine is currently available. Previous reports indicate the importance of the O-antigen of Salmonella lipopolysaccharide for virulence and resistance to antibody-mediated killing. We hypothesised that isolates with more O-antigen have increased resistance to antibody-mediated killing and are more likely to be invasive than gastrointestinal. Methodology/Principal findings: We studied 192 NTS isolates (114 Typhimurium, 78 Enteritidis) from blood and stools, mostly from paediatric admissions in Kenya 2000-2011. Isolates were tested for susceptibility to antibody-mediated killing, using whole adult serum. O-antigen structural characteristics, including O-acetylation and glucosylation, were investigated. Overall, isolates were susceptible to antibody-mediated killing, but S. Enteritidis were less susceptible and expressed more O-antigen than Typhimurium (p\u3c0.0001 for both comparisons). For S. Typhimurium, but not Enteritidis, O-antigen expression correlated with reduced sensitivity to killing (r = 0.29, 95% CI = 0.10-0.45, p = 0.002). Both serovars expressed O-antigen populations ranging 21-33 kDa average molecular weight. O-antigen from most Typhimurium were O-acetylated on rhamnose and abequose residues, while Enteritidis O-antigen had low or no O-acetylation. Both Typhimurium and Enteritidis O-antigen were approximately 20%-50% glucosylated. Amount of S. Typhimurium O-antigen and O-antigen glucosylation level were inversely related. There was no clear association between clinical presentation and antibody susceptibility, O-antigen level or other O-antigen features. Conclusion/Significance: Kenyan S. Typhimurium and Enteritidis clinical isolates are susceptible to antibody-mediated killing, with degree of susceptibility varying with level of O-antigen for S. Typhimurium. This supports the development of an antibody-inducing vaccine against NTS for Africa. No clear differences were found in the phenotype of isolates from blood and stool, suggesting that the same isolates can cause invasive disease and gastroenteritis. Genome studies are required to understand whether invasive and gastrointestinal isolates differ at the genotypic level

    The invasome of Salmonella Dublin as revealed by whole genome sequencing

    Get PDF
    Background Salmonella enterica serovar Dublin is a zoonotic infection that can be transmitted from cattle to humans through consumption of contaminated milk and milk products. Outbreaks of human infections by S. Dublin have been reported in several countries including high-income countries. A high proportion of S. Dublin cases in humans are associated with invasive disease and systemic illness. The genetic basis of virulence in S. Dublin is not well characterized. Methods Whole genome sequencing was applied to a set of clinical invasive and non-invasive S. Dublin isolates from different countries in order to characterize the putative genetic determinants involved in the virulence and invasiveness of S. Dublin in humans. Results We identified several virulence factors that form the bacterial invasome and may contribute to increasing bacterial virulence and pathogenicity including mainly Gifsy-2 prophage, two different type 6 secretion systems (T6SSs) harbored by Salmonella pathogenicity islands; SPI-6 and SPI-19 respectively and virulence genes; ggt and PagN. Although Vi antigen and the virulence plasmid have been reported previously to contribute to the virulence of S. Dublin we did not detect them in all invasive isolates indicating that they are not the main virulence determinants in S. Dublin. Conclusion Several virulence factors within the genome of S. Dublin might contribute to the ability of S. Dublin to invade humans’ blood but there were no genomic markers that differentiate invasive from non-invasive isolates suggesting that host immune response play a crucial role in the clinical outcome of S. Dublin infection

    The Role of the st313-td Gene in Virulence of Salmonella Typhimurium ST313

    Get PDF
    Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role in virulence of a gene with a yet unknown function, st313-td, detected in ST313 through comparative genomics. Additionally, the structure of the genomic island ST313-GI, harbouring the gene was determined. The gene st313-td was cloned into wild type S. Typhimurium 4/74 (4/74-C) as well as knocked out in S. Typhimurium ST313 02-03/002 (Δst313-td) followed by complementation (02-03/002-C). Δst313-td was less virulent in mice following i.p. challenge than the wild type and this phenotype could be partly complemented in trans, indicating that st313-td plays a role during systemic infection. The gene st313-td was shown not to affect invasion of cultured epithelial cells, while the absence of the gene significantly affects uptake and intracellular survival within macrophages. The gene st313-td was proven to be strongly associated to invasiveness, harboured by 92.5% of S. Typhimurium blood isolates (n = 82) and 100% of S. Dublin strains (n = 50) analysed. On the contrary, S. Typhimurium isolates of animal and food origin (n = 82) did not carry st313-td. Six human, non-blood isolates of S. Typhimurium from Belarus, China and Nepal harboured the gene and belonged to sequence types ST398 and ST19. Our data showed a global presence of the st313-td gene and in other sequence types than ST313. The gene st313-td was shown to be expressed during logarithmic phase of growth in 14 selected Salmonella strains carrying the gene. This study reveals that st313-td plays a role in S. Typhimurium ST313 pathogenesis and adds another chapter to understanding of the virulence of S. Typhimurium and in particular of the emerging sequence type ST313

    In vitro Anticancer Screening of 24 Locally Used Nigerian Medicinal Plants

    Get PDF
    Background: Plants that are used as traditional medicine represent a relevant pool for selecting plant candidates that may have anticancer properties. In this study, the ethnomedicinal approach was used to select several medicinal plants native to Nigeria, on the basis of their local or traditional uses. The collected plants were then evaluated for cytoxicity. Methods: The antitumor activity of methanolic extracts obtained from 24 of the selected plants, were evaluated in vitro on five human cancer cell lines. Results: Results obtained from the plants screened indicate that 18 plant extracts of folk medicine exhibited promising cytotoxic activity against human carcinoma cell lines. Erythrophleum suaveolens (Guill. & Perr.) Brenan was found to demonstrate potent anti-cancer activity in this study exhibiting IC50 = 0.2-1.3 μ\mug/ml. Conclusions: Based on the significantly potent activity of some plants extracts reported here, further studies aimed at mechanism elucidation and bio-guided isolation of active anticancer compounds is currently underway.Chemistry and Chemical Biolog

    An appraisal of rehabilitation regimes used for improving functional outcome after total hip replacement surgery

    Get PDF
    This study aimed to systematically review the literature with regards to studies of rehabilitation programmes that have tried to improve function after total hip replacement (THR) surgery. 15 randomised controlled trials were identified of which 11 were centre-based, 2 were home based and 2 were trials comparing home and centre based interventions. The use of a progressive resistance training (PRT) programme led to significant improvement in muscle strength and function if the intervention was carried out early (< 1 month following surgery) in a centre (6/11 centre-based studies used PRT), or late (> 1 month following surgery) in a home based setting (2/2 home based studies used PRT). In direct comparison, there was no difference in functional measures between home and centre based programmes (2 studies), with PRT not included in the regimes prescribed. A limitation of the majority of these intervention studies was the short period of follow up. Centre based program delivery is expensive as high costs are associated with supervision, facility provision, and transport of patients. Early interventions are important to counteract the deficit in muscle strength in the affected limb, as well as persistent atrophy that exists around the affected hip at 2 years post-operatively. Studies of early home-based regimes featuring PRT with long term follow up are needed to address the problems currently associated with rehabilitation following THR
    corecore