41 research outputs found

    Effect of Iron Isomaltoside on Skeletal Muscle Energetics in Patients with Chronic Heart Failure and Iron Deficiency: The FERRIC-HF II Randomized Mechanistic Trial

    Get PDF
    BACKGROUND:Iron repletion augments exercise capacity in chronic heart failure (HF), but there is a lack of mechanistic data explaining how iron could augment exercise performance despite minimal changes in hemoglobin (Hb). Besides Hb, iron is an obligate component of mitochondrial enzymes that generate cellular energy in the form of adenosine triphosphate and phosphocreatine (PCr). Dynamic phosphorus magnetic resonance spectroscopy is a noninvasive tool that quantifies in vivo muscle energetics by measuring the kinetics of PCr recovery after exertion. We tested the hypothesis that intravenous iron repletion in chronic HF enhances skeletal muscle energetics as reflected by shorter PCr recovery half-times (PCr t1/2) on phosphorus magnetic resonance spectroscopy. METHODS:We enrolled 40 patients (50% anemic) with chronic HF, New York Heart Association class ≥II, left ventricular ejection fraction ≤45%, and iron deficiency (ferritin<100 μg/L or 100-300 μg/L with transferrin saturation <20%). Subjects underwent stratified (anemic versus nonanemic) randomization (1:1) to a single, double-blinded, total dose infusion of iron isomaltoside or saline placebo with end points reassessed early at 2 weeks posttreatment to minimize confounding from exercise adaptation. The primary end point was PCr t1/2 at 2 weeks. Secondary end points included ADP recovery half-time (ADP t1/2; energetic marker), iron status, symptoms, Hb, exercise capacity, and safety. RESULTS:In the total population, treatment groups were similar at baseline. At 2 weeks, iron isomaltoside improved PCr t1/2 (adjusted difference, -6.8 s; 95% CI, 11.5 to -2.1; P=0.006), ADP t1/2 (-5.3 s; 95% CI, -9.7 to -0.9; P=0.02), ferritin (304 ng/mL; 95% CI, 217-391; P<0.0001), transferrin saturation (6.8%; 95% CI, 2.7-10.8; P=0.002), New York Heart Association class (-0.23; 95% CI, -0.46 to -0.01; P=0.04), resting respiratory rate (-0.7 breaths/min; 95% CI, -1.2 to -0.2; P=0.009), and postexercise Borg dyspnea score (-2.0; 95% CI, -3.7 to -0.3; P=0.04), but not Hb (2.4 g/L; 95% CI, -3.5 to 8.4; P=0.41). Adverse events were similar between groups. In subgroup analyses, iron isomaltoside improved PCr t1/2 in anemic (-8.4 s; 95% CI, -16.7 to -0.2; P=0.04) and nonanemic (-5.2 s; 95% CI, -10.6 to 0.2; P=0.06) cohorts. CONCLUSIONS:In patients with chronic HF and iron deficiency, a total repletion dose of iron isomaltoside given at a single sitting is well tolerated and associated with faster skeletal muscle PCr t1/2 at 2 weeks, implying better mitochondrial function. Augmented skeletal muscle energetics might therefore be an important mechanism via which iron repletion confers benefits in chronic HF despite minimal Hb changes. CLINICAL TRIAL REGISTRATION:URL: https://www.clinicaltrialsregister.eu/ctr-search/trial/2012-005592-13/GB . Unique identifier: EudraCT 2012-005592-13

    A Randomized Trial of Intravenous Iron Supplementation and Exercise on Exercise Capacity in Iron-Deficient Nonanemic Patients With CKD

    Get PDF
    Introduction: Patients with chronic kidney disease (CKD) are often iron deficient, even when not anemic. This trial evaluated whether iron supplementation enhances exercise capacity of nonanemic patients with CKD who have iron-deficiency. Methods: Prospective, multicenter double-blind randomized controlled trial of nondialysis patients with CKD and iron-deficiency but without anemia (Hemoglobin [Hb] >110 g/l). Patients were assigned 1:1 to intravenous (IV) iron therapy, or placebo. An 8-week exercise program commenced at week 4. The primary outcome was the mean between-group difference in 6-minute walk test (6MWT) at 4 weeks. Secondary outcomes included 6MWT at 12 weeks, transferrin saturation (TSAT), serum ferritin (SF), Hb, renal function, muscle strength, functional capacity, quality of life, and adverse events at baseline, 4 weeks, and at 12 weeks. Mean between-group differences were analyzed using analysis of covariance models. Results: Among 75 randomized patients, mean (SD) age for iron therapy (n = 37) versus placebo (n = 38) was 54 (16) versus 61 (12) years; estimated glomerular filtration rate (eGFR) (34 [12] vs. 35 [11] ml/min per 1.73 m2], TSAT (23 [12] vs. 21 [6])%; SF (57 [64] vs. 62 [33]) μg/l; Hb (122.4 [9.2] vs. 127 [13.2] g/l); 6MWT (384 [95] vs. 469 [142] meters) at baseline, respectively. No significant mean between-group difference was observed in 6MWT distance at 4 weeks. There were significant increases in SF and TSAT at 4 and 12 weeks (P < 0.02), and Hb at 12 weeks (P = 0.009). There were no between-group differences in other secondary outcomes and no adverse events attributable to iron therapy. Conclusion: This trial did not demonstrate beneficial effects of IV iron therapy on exercise capacity at 4 weeks. A larger study is needed to confirm if IV iron is beneficial in nondialysis patients with CKD who are iron-deficient

    Role of heat shock protein 65 kDa on vascular smooth muscle cell proliferation

    No full text
    Stable URL: http://www.jstor.org/stable/3515900Introduction. Proliferation of vascular smooth muscle cells (vSMC) is one of the most important pathological processes in atherosclerosis. Recently, heat-shock protein (Hsp65) has been implicated in the pathogenesis and propagation of this disease. The aim of this study was to examine the effect of Hsp65 on the proliferation of vSMCs. Materials/Methods. Male Dark Agouti rats were immunized with 200 gg of Hsp65 (n = 6) or saline control (n = 5) and then sacrificed at 10 weeks. The thoracic aortae were removed and from sections, vSMCs were grown using standard explant technique. Cells were grown to confluence using DMEM+ 10% fetal calf serum (FCS), trypsinized, plated into 96-well plates, and made quiescent. These were subsequently stimulated with FCS (0-20% concentration) over 24 and 48 h. Proliferation was determined by the uptake of 5-bromo-2' deoxyuridine using colorimetric ELISA. Results. At 24 h, there was no difference in proliferation in any of the groups. However, at 48 h, vSMC proliferation was significantly reduced in the rats immunized with Hsp65 compared to controls. Data are expressed as means?SEM (see Figure 1). Conclusions. These findings suggest that prior in vivo inoculation with Hsp65 subsequently inhibited smooth muscle cell proliferation in vitro. Therefore Hsp65 per se could not account for the proliferation of vSMC seen in atherosclerosis

    Blood viscosity and its relationship to iron deficiency, symptoms, and exercise capacity in adults with cyanotic congenital heart disease

    Get PDF
    Objectives This study sought to determine the relationship between blood viscosity and iron deficiency and their impact on symptoms and exercise function in adults with cyanotic congenital heart disease. Background Iron deficiency is believed to raise whole blood viscosity in cyanotic congenital heart disease, although available data are inconsistent. Methods Thirty-nine cyanotic adults were prospectively assessed for iron deficiency (transferrin saturation ≤5%), hyperviscosity symptoms, and exercise capacity. Same-day measurement of whole blood viscosity and hematocrit (Hct) adjusted viscosity (cells resuspended in autologous plasma to Hct of 45%) was performed at shear rates ranging from 0.277 s−1 to 128.5 s−1. Results Viscosity did not differ between patients with iron deficiency (n = 14) and those without (n = 25). Whole blood viscosity correlated with Hct (r = 0.63, p < 0.001 at low shear and r = 0.84, p < 0.001 at high shear) but not with red blood cell size or iron indices. Hyperviscosity symptoms were independent of iron indices but directly correlated with increased Hct-adjusted viscosity (r = 0.41, p = 0.01). Exercise capacity did not differ in iron-deficient patients. However, peak oxygen consumption was higher in those with Hct ≥ 65% (12.6 ± 3.4 ml/kg/m2 vs. 9.8 ± 2.6 ml/kg/m2, mean ± SD, p = 0.036) despite higher whole blood viscosity in these same individuals (p < 0.01 for all shear rates). Conclusions Iron deficiency is common in cyanotic adults but does not alter viscosity. Hyperviscosity symptoms are associated with a higher Hct-adjusted viscosity independent of cell size or iron stores. Higher Hct is associated with better exercise capacity. Further work to understand the origin of hyperviscosity symptoms is warranted
    corecore