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ABSTRACT  25 

Background: Iron repletion augments exercise capacity in chronic heart failure (CHF) but there is a 26 

lack of mechanistic data explaining how iron could increment exercise performance despite minimal 27 

changes in hemoglobin (Hb). Besides Hb, iron is an obligate component of mitochondrial enzymes that 28 

generate cellular energy in the form of adenosine triphosphate and phosphocreatine (PCr). Dynamic 29 

phosphorus magnetic resonance spectroscopy (31P MRS) is a noninvasive tool that quantifies in vivo 30 

muscle energetics by measuring the kinetics of PCr recovery after exertion. We tested the hypothesis 31 

that intravenous (IV) iron repletion in CHF enhances skeletal muscle energetics as reflected by shorter 32 

PCr recovery half-times (PCr t1/2) on 31P MRS.  33 

 34 

Methods: We enrolled 40 patients (50% anemic) with CHF, NYHA class≥ II, LVEF≤ 45%, and iron 35 

deficiency (ferritin<100µg/L or 100-300µg/L with transferrin saturation [TSAT]< 20%). Subjects 36 

underwent stratified (anemic vs non-anemic) randomization (1:1) to a single, double-blinded, total dose 37 

infusion of Iron Isomaltoside (IIM) or saline placebo with endpoints reassessed early at 2 weeks post-38 

treatment to minimise confounding from exercise adaptation. The primary endpoint was PCr t1/2 at 2 39 

weeks. Secondary endpoints included adenosine diphosphate recovery half-time (ADP t1/2; energetic 40 

marker), iron status, symptoms, Hb, exercise capacity and safety. 41 

 42 

Results: In the total population, treatment groups were similar at baseline. At 2 weeks, IIM improved 43 

PCr t1/2 (adjusted difference -6.8s [95% confidence interval 11.5,-2.1], P=0.006), ADP t1/2 (-5.3s [-9.7,-44 

0.9], P=0.02), ferritin (304ng/mL [217,391], P<0.0001), TSAT (6.8% [2.7,10.8], P=0.002), NYHA 45 

class (-0.23[-0.46,-0.01], P=0.04), resting respiratory rate (-0.7 breaths/min [-1.2,-0.2], P=0.009) and 46 

post-exercise Borg dyspnea score (-2.0[-3.7,-0.3], P=0.04), but not Hb (2.4g/L [-3.5,8.4], P=0.41). 47 

Adverse events were similar between groups. In subgroup analyses, IIM improved PCr t1/2 in anemic (-48 

8.4s [-16.7,-0.2], P=0.04) and non-anemic (-5.2s [-10.6,0.2], P=0.06) cohorts. 49 
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Conclusion: In patients with CHF and ID, a total repletion dose of IIM given at a single sitting is well 50 

tolerated and associated with faster skeletal muscle PCr t1/2 at 2 weeks, implying better mitochondrial 51 

function. Augmented skeletal muscle energetics might therefore be an important mechanism via which 52 

iron repletion confers benefits in CHF despite minimal Hb changes. 53 

 54 

Clinical Trial Registration: URL: https://www.clinicaltrialsregister.eu/ctr-search/trial/2012-005592-55 

13/GB. Unique identifier: EudraCT 2012-005592-13. 56 

57 
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CLINICAL PERSPECTIVE 58 

What is New? 59 

• Little is known about how intravenous iron repletion augments exercise capacity in chronic 60 

heart failure (CHF) despite minimal hemoglobin changes.  61 

• This randomized, double-blind, placebo-controlled Ferric Iron in Heart Failure (FERRIC-HF) II 62 

trial shows that a single total dose infusion of Iron Isomaltoside repleted iron stores and 63 

augmented skeletal muscle energetics at 2 weeks post-infusion. 64 

• Enhancements in skeletal muscle energetics, which imply better mitochondrial function, were 65 

accompanied by improved symptoms despite no change in hemogobin at 2 weeks. 66 

 67 

What are the Clinical Implications? 68 

• Augmented skeletal muscle energetics is a likely mechanism via which iron repletion confers 69 

benefits in CHF despite minimal hemoglobin changes.  70 

• FERRIC-HF II supports clinical iron repletion in CHF. 71 

• A total repletion dose of Iron Isomaltoside given at a single sitting is feasible in CHF patients. 72 

73 
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INTRODUCTION 74 

Iron deficiency (ID) is prevalent and ominous in chronic heart failure (CHF),1-4 and its correction 75 

markedly improves symptoms and exercise tolerance. Yet, in landmark studies such as the seminal 76 

FERRIC-HF (Ferric Iron in Heart Failure) trial, the hemoglobin (Hb) response to intravenous (IV) iron 77 

was surprisingly small (5 g/L increase over 4 months),3,4 and did not correlate with changes in exercise 78 

indices. Consequently, it is unknown how IV iron augments exercise capacity despite minimal changes 79 

in Hb, and this paucity of mechanistic data partly hampers the clinical uptake of iron repletion in CHF. 80 

 81 

Exercise is a highly energetic process with skeletal muscle contractions powered by the hydrolysis of 82 

adenosine triphosphate (ATP) which is buffered by phosphocreatine (PCr) consumption.5,6 To sustain 83 

exertion, PCr is resynthesised via glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) 84 

which generates over 95% of cellular ATP.7,8 Iron is a component of Hb and myoglobin, and of 85 

proteins of the Krebs cycle, ß-oxidation pathway, and the electron transport chain which determine 86 

OXPHOS capacity.9-12 In animal studies, cellular ID triggers mitochondrial dysfunction and exercise 87 

intolerance, even in the absence of anemia.13-15 Thus, iron repletion might enhance exercise capacity by 88 

energizing skeletal muscle independently of Hb. To date, no clinical trial has addressed this in humans. 89 

 90 

Dynamic phosphorus magnetic resonance spectroscopy (31P MRS) is uniquely suited to quantifying 91 

human skeletal muscle energetics in vivo.16,17 It enables the real-time noninvasive tracking of skeletal 92 

muscle PCr, ATP and inorganic phosphate (Pi) concentrations and cytostolic pH during exercise and 93 

recovery. Because PCr replenishment on cessation of exercise is predominantly driven  by OXPHOS,18 94 

the PCr recovery half-time (PCr t1/2) is an inverse marker of mitochondrial oxidative function that is 95 

relatively independent of exercise intensity.16 We conducted the FERRIC-HF II trial to test the 96 

hypothesis that iron repletion with a single total dose infusion of Iron Isomaltoside (IIM) would 97 

improve skeletal muscle energetics as reflected by a shorter PCr t1/2 in CHF patients. 98 
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METHODS 99 

Study Design 100 

FERRIC-HF II was an investigator-led, randomized, double-blind, placebo-controlled, mechanistic trial 101 

conducted at King's College Hospital, London, UK. The study involved 1 screening visit, 2 baseline 102 

visits within 4 weeks of screening, and 2 final visits 2 weeks after treatment allocation. The protocol 103 

was approved by the South-Central Berkshire ethics committee, the UK Medicines and Healthcare 104 

products Regulatory Agency, and the independent local research governance board. King's College 105 

London University and King's College Hospital NHS Foundation Trust were co-sponsors. The King's 106 

Health Partners clinical trial office monitored the trial and ensured compliance with the International 107 

Conference on Harmonization guidelines for Good Clinical Practice and the Declaration of Helsinki. 108 

Written informed consent was obtained from all patients. The trial is registered on 109 

clinicaltrialsregister.eu (EudraCT 2012-005592-13) and data from this analysis is obtainable from the 110 

authors on reasonable request. 111 

 112 

Study Patients 113 

Eligibility criteria were: age ≥30 years; stable symptomatic CHF (New York Heart Association 114 

[NYHA] III and left ventricular ejection fraction [LVEF] ≤45%, or if NYHA II then LVEF ≤40% 115 

within the preceding 6 months); use of optimal CHF drugs for ≥4 weeks without dose changes for ≥2 116 

weeks; screening Hb <120 g/L in females and < 130 g/L in males (anemic group) or ≥120 g/L in 117 

females and  ≥ 130 g/L in males (non-anemic group); ID as defined by the FERRIC-HF criteria of 118 

ferritin <100 µg/L or 100-300 µg/L with transferrin saturation (TSAT) <20%;3 folate and vitamin B12 119 

levels ≥ lower limit of reference range; resting blood pressure ≤160/100 mm Hg; and a negative 120 

pregnancy test in women of child-bearing age. 121 

 122 
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Exclusion criteria were a history of acquired iron overload, known hemochromatosis or first degree 123 

relatives with hemochromatosis; an allergic disorder (e.g., asthma, eczema, and anaphylactic reactions); 124 

prior hypersensitivity to IV iron drugs or their excipients; active infection, bleeding, malignancy, 125 

hemolytic anemia, rheumatoid arthritis, and myelodysplasia; HIV/AIDS; chronic liver disease with 126 

transaminases >3 times the upper limit of the reference range; chronic lung disease with FEV1 < 50% 127 

predicted; coagulopathy or anticoagulated for a metallic valve or LV thrombus; contraindications to 128 

MRS; immunosuppressant use; renal dialysis; need for erythropoietin or blood transfusions; unstable 129 

angina; severe obstructive cardiac lesions; uncontrolled arrhythmias; and musculoskeletal limitations. 130 

 131 

Randomization 132 

Qualifying patients attended for 2 baseline visits at week 0 collectively including a clinical history, 133 

physical examination, NYHA class assessment, 12-lead electrocardiogram, blood tests, Kansas City 134 

Cardiomyopathy Questionnaire (KCCQ), echocardiogram, 6-min walk test, cardiopulmonary exercise 135 

test, quadriceps muscle 31P MRS, and a vastus lateralis muscle biopsy. At the end of the second visit, 136 

patients were randomly assigned within 2 strata (anemic or non-anemic) in permuted blocks of 4 to a 137 

single total repletion dose of IIM or placebo (normal saline) in a 1:1 ratio.  Randomization was 138 

performed by a clinical trials pharmacist using an automated web-based system (Sealed Envelope Ltd, 139 

London, UK). 140 

 141 

Study Drug and Blinding 142 

Iron (III) isomaltoside 1000 (Monofer®; Pharmacosmos A/S, Holbaek, Denmark) was provided as a 143 

solution for IV infusion in 100mg iron/mL ampoules. The total repletion dose was calculated to the 144 

nearest multiple of 100mg using the Ganzoni formula: body weight (kg) x 2.4 x (15 - patients 145 

Hb[g/dL]) + 500 mg (for stores).19 Doses of 0-10 mg/kg and 11-20 mg/kg were infused over 30 and 60 146 

minutes respectively. Doses exceeding 20 mg/kg were split and given at 2 separate sittings 1 week 147 
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apart. Monofer® was added to 100 mL sterile 0.9% saline for infusions. Patients randomized to placebo 148 

had their repletion dose and infusion duration calculated as above but received 100 mL sterile 0.9% 149 

saline over the infusion period. All patients were observed for 1 hour post treatment with heart rate and 150 

blood pressure documented every 15 minutes. Patients who received placebo were offered Monofer® at 151 

the end of the study if they remained iron-deficient.  152 

 153 

To achieve blinding, allocated therapy was dispensed by a clinical trials pharmacist to unblinded 154 

research nurses who prepared and administered the infusions using opaque IV bags and giving sets 155 

(Medipak, Virginia, USA). All other members of the research team vacated the infusion room before 156 

the allocated therapy was collected from pharmacy. A curtain shielded the infusion arm from the 157 

patient. The unblinded nurse was not involved in assessing endpoints.   158 

 159 

Primary Endpoint 160 

The primary endpoint was skeletal muscle energetics at 2 weeks post-treatment as assessed by the PCr 161 

t1/2 on dynamic 31P MRS. This was performed on a clinical 3T scanner (Achieva, Philips Medical 162 

Systems, Best, the Netherlands). Patients were asked to refrain from strenuous exercise and alcohol for 163 

the preceding 24 hours, and from caffeine and food for the preceding 6 and 2 hours, respectively. 164 

Heights and weights were measured to the nearest integer and used to calculate lean body mass.20 165 

Subjects were positioned feet-first and supine in the scanner and a 14 cm diameter 31P surface coil 166 

(Philips Medical Systems, Best, the Netherlands) was strapped to the dominant quadriceps. A non-167 

ferromagnetic weight, equivalent to 10% of lean body mass, was strapped to the dominant ankle 168 

(Figure 1).17 This load was chosen to target an ~30% exertional fall in PCr from baseline thereby 169 

avoiding any significant lowering of pH (<6.8) which prolongs PCr t1/2.21 Participants then practiced 170 

knee extensions before full entry into the scanner bore, where they were positioned such that the centre 171 

of the 31P coil was at magnet isocenter. A series of triplanar 1H scout images were acquired and used 172 
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for automatic shimming to optimize the B0 field homogeneity. Continuous 31P spectra were then 173 

acquired (unlocalised, repetition time 2 sec, echo time 0.35 msec, bandwidth 2000 Hz, excitation flip 174 

angle optimized for flip angle and 1024 data points) in conjunction with the exercise paradigm 175 

consisting of 1 min rest, 1 min knee extensions at 0.5 Hz, and 5 min recovery. This was repeated to 176 

permit two PCr t1/2 measurements which were then averaged. The same MRS sequence was acquired 177 

with a repetition time of 30 sec (8 averages) to provide a fully relaxed spectrum for the calculation of 178 

metabolite concentrations. 179 

 180 

31P MRS spectra were analysed using jMRUI v5.2 and quantified using the AMARES algorithm with 181 

prior knowledge.22,23 Absolute concentrations of PCr and Pi were calculated making the standard 182 

assumption that resting ATP concentration is 8.2 mmol/L cytosolic water (i.e. mM).24 Intramuscular 183 

pH was estimated from the chemical shift of Pi using the following equation: pH = 6.75 + log (α-184 

3.27/5.69-α), where α is the chemical shift of the Pi peak relative to PCr.25 Free cytosolic ADP 185 

concentration was calculated by standard means using the creatine kinase equation: ADP = ATP x 186 

creatine / [PCr x H+ x 1.66 x 109 M-1], and assuming that total creatine is 42.5 mM.24 The PCr t1/2 was 187 

found by fitting the following monoexponential equation to the PCr recovery data: PCr(t) = PCrinitial + 188 

(PCrend - PCrinitial)(1-e-kt), where t is the time from the end of exercise, PCrinitial and PCrend are the PCr 189 

concentrations at the start and end phase of recovery, and k is the recovery rate constant. PCr t1/2 is 190 

calculated as loge2/k. The analogous monoexponential equation was fitted to the ADP recovery data to 191 

determine ADP t1/2, another inverse marker of skeletal muscle energetics.16    192 

 193 

Secondary and Safety Endpoints 194 

Secondary endpoints included (1) skeletal muscle energetics as reflected by the ADP t1/2 and the 195 

intracellular concentrations of high-energy phosphate compounds and pH on dynamic 31P MRS; (2) 6-196 

min walk distance; (3) peak oxygen consumption (VO2) and the ratio of minute ventilation to CO2 197 
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production on cardiopulmonary exercise testing; (4) symptoms as quantified by the NYHA class, Borg 198 

dyspnea score, and fatigue scale (assessed using a 10-point visual analogue fatigue scale, from 1 = no 199 

fatigue, to 10 = very severe fatigue); (5) quality of life as assessed by the KCCQ; (6) Hb and iron status 200 

(ferritin, TSAT, soluble transferrin receptor); (7) N-terminal pro-B-type natriuretic peptide (NT-201 

proBNP); and (8) LVEF. 202 

 203 

The 6-min walk test was performed using a flat, straight, 20-m corridor with turnaround points marked 204 

by a chair at each end of the measured course. Patients were verbally encouraged to cover as much 205 

ground at their own pace for 6 min and were asked to rate themselves on a Borg dyspnea scale before 206 

and after exercising. The same blinded investigator supervised all 6-min walk tests for a specific 207 

subject. Cardiopulmonary exercise testing was performed using a modified Naughton treadmill 208 

protocol.26 Maximal exercise capacity was attained if the respiratory exchange ratio was >1.00 or had 209 

increased by ≥0.15 from the resting value. All treadmill exercise tests were supervised by blinded 210 

cardiac physiologists.  211 

 212 

Safety endpoints included (1) adverse events; (2) blood pressure; (3) heart rate; (4) respiratory rate; (5) 213 

serum creatinine concentration; (6) serum AST; (7) serum C-reactive protein; and (8) blood pressure 214 

and heart rate during treatment infusions.  215 

 216 

Statistics 217 

Statistical analyses were prespecified and followed the intention-to-treat principle.  Sample size 218 

estimates were hampered by a paucity of quadriceps 31P MRS data in patients with CHF. Initial 219 

calculations based on a trial using calf 31P MRS,27 suggested that 40 patients in total would be needed 220 

to detect a 30 sec difference in PCr t1/2 (α = 0.05, β = 90%, standard deviation = 24 sec) and cover for 221 

drop-outs and missing data. Review of the accruing blinded data suggested that the variance and 222 



FERRIC HF II  

     11 

standard deviation of PCr t1/2 were likely to be smaller but that 40 patients in total was still sufficient to 223 

detect a more conservative difference of 6 sec with a standard deviation of 5 sec (α = 0.05, β = 90%).  224 

 225 

The primary analysis was a comparison of PCr t1/2 at 2 weeks using an analysis of covariance model 226 

with baseline PCr t1/2 as covariate. All other continuous endpoints were similarly analysed. Missing 227 

data were imputed using the last observation carry-forward method for patients who had a last 228 

observation recorded post treatment. For those who did not, the mean value for their treatment group 229 

was used for imputations. Sensitivity analyses without imputation and with a post-hoc Markov chain-230 

Monte Carlo imputation with 10 iterations were performed. Categorical variables were evaluated using 231 

a Pearson’s χ2 test. Baseline and week-2 data are described using appropriate summary measures. The 232 

estimates and two-sided 95% confidence intervals (95% CI) for the difference between least-squares 233 

means of the two treatment arms are given. All statistical tests were two-sided and we judged a P-value 234 

< 0.05 significant. All analyses were carried out using Stata 9.2 (Statacorp, Texas) and Statview 4.5 for 235 

Windows (Abacus Concepts, California). 236 

237 
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RESULTS 238 

Patients and Iron Isomaltoside Administration 239 

Between October 2014 and December 2016, we screened 83 outpatients (Figure 2) and randomized 40 240 

to IIM (n=21) or placebo (n=19). Baseline characteristics were balanced between the two treatment 241 

groups (Table 1). All patients received their allocated therapy at a single sitting except for 1 subject 242 

who received placebo over 2 sittings. In those randomized to IIM, the mean iron repletion dose was 243 

929±320 mg (11±4 mg/kg). No subject was lost to follow-up and only 1 patient did not attend an end-244 

of-study visit due to hospitalization. Overall, 4.2% of the analysed data was imputed.  Sensitivity 245 

analyses yielded consistent results.  246 

 247 

Primary Endpoint 248 

During dynamic 31P MRS the treatment arms exercised against similar weights (IIM: 5.7±0.7 kg, 249 

placebo: 5.5±0.9 kg, P=0.57) and achieved similar degrees of exertional PCr depletion at baseline (IIM: 250 

36±11%, placebo: 34±13%, P=0.52) and at 2 weeks (IIM: 38±13%, placebo: 37±9%, P=0.71). At 251 

baseline, post-exercise PCr t1/2 was similar in the randomized groups (Table 1). After treatment, PCr t1/2 252 

improved (shortened) by 17% (-4±10 sec) in the IIM group and worsened by 7% (3±7 sec) in the 253 

placebo arm (Table 2). The primary endpoint, PCr t1/2 at 2 weeks, was significantly shorter in patients 254 

randomized to IIM with an adjusted between-group difference of – 6.8 sec (95% CI -11.5 to -2.1, 255 

P=0.006; Table 2, Figure 3). This remained significant even after post-hoc adjustment for both baseline 256 

PCr t1/2 and Hb (-6.8 sec, 95% CI -11.6 to -2.0, P=0.007) or other variables that appeared unbalanced 257 

such as age (-8.0 sec, 95% CI -12.8 to -3.2, P=0.002),  and NTpro-BNP (-7.2 sec, 95% CI-10.5 to -1.0, 258 

P=0.007). No anemia status by treatment group interaction existed (P=0.44). 259 

 260 

Secondary Endpoints  261 

Skeletal Muscle ADP t1/2, Metabolite Concentrations and pH 262 
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Treatment with IIM significantly improved (shortened) post-exercise ADP t1/2 (Table 2) by 45% (-5±9 263 

sec) while it lengthened by 3% (3±7 sec) with placebo. No difference in resting or end-exercise PCr 264 

and ADP levels were seen between the groups after treatment (Table 2). Neither the resting nor end-265 

exercise pH differed between the groups after treatment (Table 1 & 2), and only 1 patient at baseline, 266 

and no patient at 2 weeks, had a pH ≤ 6.8 during exercise. Possibly due to this limited acidosis, no 267 

correlation was seen between exertional pH decrements and the degree of PCr depletion, iron status or 268 

the visual analogue fatigue scale. As expected, changes in ADP t1/2 correlated with changes in PCr t1/2 269 

(r=0.65, P<0.001). 270 

 271 

Hemoglobin and Iron Status 272 

Ferritin increased by 83% (327±185 ng/mL) in the IIM group and decreased by 24% (2±27 ng/mL) in 273 

the placebo group (Table 2). Similarly, TSAT increased by 29% (8±6%) with IIM and by 4% (2±9%) 274 

with placebo. Despite this, Hb remained largely unchanged, being minimally increased by 0.4% (0.6±9 275 

g/L) in the IIM arm, and minimally decreased by 0.8% (-1±14 g/L) in the placebo arm. Changes in 276 

ferritin (log transformed; r= -0.37, P=0.02) but not Hb (r=0.17, P=0.30) correlated with changes in PCr 277 

t1/2. 278 

 279 

Symptoms, Exercise Capacity, LVEF and NT-proBNP 280 

Therapy with IIM improved symptoms as reflected by reductions in NYHA class and the post-exercise 281 

Borg dyspnea score (Table 2). After 2 weeks, 2 (10%), 19 (90%), and 0 (0%) patients in the IIM group 282 

had an improved, unchanged, or worse NYHA class, respectively. By contrast, 1 (5%), 15 (79%), and 3 283 

(16%) patients in the placebo group had an improved, unchanged, or worse NYHA class. There was no 284 

difference in the pre-exercise Borg dyspnea score (-0.6, 95% CI -1.5 to 0.2, P=0.12), visual analogue 285 

fatigue scale or the KCCQ score (Table 1). Symptomatic improvements were not accompanied by 286 

significant changes in LVEF, NT-proBNP, 6-min walk distance, visual analogue fatigue scale (-0.59, 287 
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95% CI -1.45 to 0.28, P=0.18), peak VO2 or the ratio of minute ventilation to CO2 production (-0.2, 288 

95% CI -3.3 to 2.9, P=0.88) despite both groups attaining similar peak respiratory exchange ratios at 289 

baseline (Table 1) and at week 2 (IIM: 1.10±0.10, placebo: 1.05±0.09). Changes in 6-min walk 290 

distance related to changes in PCr t1/2 (r= -0.33, P=0.04), and peak VO2 related to PCr t1/2 in the IIM 291 

(r=-0.57, P=0.007) but not placebo (r=-0.30, P=0.21) group at 2 weeks. 292 

 293 

Safety Endpoints  294 

The incidence of adverse events was comparable between the treatment arms with 3 (14%) and 1 (5%) 295 

events in the IIM and placebo groups, respectively (P=0.34). In the IIM arm, 1 patient had arthralgia 296 

during the infusion, 1 patient noted a mild rash at the venepuncture site 1 day post-infusion, and 1 297 

patient had a serious adverse event (hospitalized 1 week post-infusion with unstable angina needing 298 

coronary artery bypass surgery) that was judged unrelated to study drug. No anaphylactic reactions 299 

occurred. In the placebo arm, 1 patient reported coryzal symptoms 3 days post-infusion. 300 

 301 

Infusions of IIM had no impact on hemodynamics. Systolic blood pressure remained unchanged from 302 

pre-infusion (122±17 mmHg) to 15 (123±17 mmHg), 30 (122±17 mmHg), 45 (119±19 mmHg), and 60 303 

(121±15 mmHg) minutes post-infusion (all P>0.05). Diastolic blood pressure and heart rate were 304 

similarly stable. At 2 weeks, no differences between the treatment arms were seen for blood pressure, 305 

heart rate, and serum creatinine, AST or CRP levels, but IIM was associated with significantly reduced 306 

respiratory rates (Table 2).  307 

 308 

Subgroup Analysis  309 

Baseline characteristics for the anemic and non-anemic subgroups stratified by treatment allocation are 310 

shown in Table 1. Mean iron repletion dose was 1155±221 mg (13±2 mg/kg) in anemic patients and 311 

680±204 mg (9±3 mg/kg) in non-anemic patients. Baseline PCr t1/2 was similar in the randomized 312 
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groups in both anemic and non-anemic subpopulations. Infusion of IIM significantly improved 313 

(shortened) PCr t1/2 at 2 weeks in anemic patients. A smaller improvement in non-anemic subjects did 314 

not reach statistical significance (Table 3).  315 

  316 

317 
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DISCUSSSION 318 

FERRIC-HF II sought to illuminate how iron repletion could dramatically augment exercise 319 

performance in CHF despite minimal Hb changes. We found that, in iron-deficient patients with CHF 320 

and an LVEF ≤45%, a single total dose infusion of IIM safely repleted iron stores and was associated 321 

with faster skeletal muscle post-exercise PCr recovery kinetics at 2 weeks, implying better 322 

mitochondrial function. Enhancements in skeletal muscle energetics occurred despite no change in Hb, 323 

but were paralleled by improvements in symptoms as reflected by reductions in NYHA class and the 324 

post-exercise Borg dyspnea score. Augmented skeletal muscle energetics might therefore be an 325 

important mechanism via which iron repletion improves functional capacity despite eliciting minimal 326 

Hb changes.  327 

 328 

Dynamic 31P MRS is uniquely able to quantify in vivo skeletal muscle energetics non-invasively. At 329 

rest, skeletal muscle pH and phosphometabolite (PCr, Pi, ADP) concentrations are dictated not by ATP 330 

supply and demand but by sarcolemmal Na+-dependent Pi and creatine uptake, Na+/H+-antiporter 331 

activity, and the net balance of adenine nucleotide breakdown and synthesis.16 At the onset of exercise, 332 

ATP consumption by myosin-ATPases increases ATP demand which is met immediately by local PCr 333 

breakdown via the creatinine kinase reaction to regenerate ATP.7 Sustained exertion is then driven by 334 

mitochondrial PCr regeneration via OXPHOS and glycolysis.5-8 Therefore, during exertion, ATP levels 335 

remain largely unchanged due to rapid PCr buffering, PCr declines due to its heightened consumption, 336 

pH falls due to elevated glycolysis, and ADP and Pi rise due to increased ATP hydrolysis and PCr 337 

consumption. At the end of exercise, PCr consumption and glycolysis cease and PCr levels start to 338 

recover at a rate commensurate with mitochondrial oxidative ATP synthesis.24 Dynamic 31P MRS 339 

enables the real-time noninvasive tracking of these biochemical events in situ, with 31P MRS measures 340 

closely related to peak VO2 and invasive markers of muscle energetics.16,28,29 In our cohort, resting pH 341 

and phosphometabolite concentrations mirrored those reported in other CHF patients and normal 342 
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subjects30-32 and were unaltered by IIM. This implies that the processes dictating resting skeletal 343 

muscle indices were unperturbed in our subjects and were not influenced by IIM over 2 weeks. On 344 

initiation of mild to moderate exercise in-magnet, skeletal muscle ATP levels remained constant, PCr 345 

and pH fell, and ADP and Pi rose in our patients as expected (see Figure 2). That the degree of 346 

exertional PCr depletion was similar in the treatment groups implies comparable effort. That only 1 347 

patient developed significant intracellular acidosis (exercise pH <6.8), which slows PCr t1/2,21 implies 348 

that our exercise paradigm did not evoke significant glycolysis and that our PCr t1/2 values likely truly 349 

reflected oxidative ATP synthesis capacity.  350 

 351 

To the best of our knowledge, this is the first study to show that iron repletion with IIM augments 352 

skeletal muscle energetics as reflected by a 14% relative acceleration of PCr recovery kinetics on 353 

dynamic 31P MRS. This represents a substantial benefit. In a randomized trial in CHF patients, 354 

Adamapolous et al., reported a 5% weekly rate of improvement in PCr t1/2 with moderate-intensity 355 

exercise training.33 In a double-blind evaluation of the energetic enhancer perhexiline, Lee et al., 356 

documented a 4% weekly rate of improvement in PCr t1/2 in CHF patients.27 In young healthy 357 

individuals, 2 weeks of high-intensity exercise training improved PCr recovery by 14% with no change 358 

in the untrained control group.34 Thus, over 2 weeks, a single total repletion dose of IIM augmented 359 

skeletal muscle energetics to the same extent as 3 weeks of moderate-intensity exercise training in 360 

CHF, 3-4 weeks of perhexiline use in CHF, and 2 weeks of high-intensity physical training in younger 361 

healthy individuals. In contrast, Melenovsky et al., very recently found no difference in PCr recovery 362 

kinetics 4 weeks after infusing Ferric Carboxymaltose (1g) in 13 CHF patients.35 This might be because 363 

their patients exercised longer (6 mins vs. 1 min) against higher resistance (7kg vs. 5.6±0.8kg) during 364 

31P MRS, leading to greater intracellular acidosis (pH 6.92±0.17 vs 6.98±0.07) which renders PCr 365 

recovery kinetics less informative of OXPHOS.16,18,21 This might also reflect their smaller sample size, 366 

lack of randomization and a control group, later reassessment at 4 weeks, or the use of Ferric 367 
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Carboxymaltose which uniquely induces hypophosphatemia which could blunt energetic gains from 368 

iron repletion.36-38 Several explanations for our findings can be posited.  369 

 370 

Post-exercise PCr t1/2 is influenced by skeletal muscle O2 supply (determined by cardiopulmonary 371 

function and Hb), storage (myoglobin), and utilization (mitochondria),16 which are all modifiable by 372 

iron. While we had no pulmonary data, cardiac function and hemodynamics were unaltered by IIM 373 

consistent with evidence that O2 delivery does not limit post-exercise PCr recovery in CHF.39 Skeletal 374 

muscle myoglobin levels are also reportedly normal and exertional myoglobin desaturation in CHF 375 

does not restrict skeletal muscle metabolism.40,41 So, the benefits of IIM are unlikely mediated via O2 376 

storage. A key mechanistic finding in FERRIC-HF II was our observation that Hb levels did not change 377 

with IIM. This accords with data in CHF showing that ID impairs exercise tolerance independently of 378 

Hb,1,2 that iron repletion improves functional capacity despite minimal Hb changes,3,4 and that such Hb 379 

changes do not correlate with increments in exercise performance.3,4 Although skeletal muscle benefits 380 

were greater in our anemic subgroup, this is probably not a function of lower Hb per se but may reflect 381 

the fact that anemic patients had a poorer iron status than non-anaemics. Thus, IIM likely improved 382 

energetics by altering skeletal muscle O2 utilization.  383 

 384 

Mitochondria power cellular processes and mitochondrial dysfunction due to ID might have been 385 

mitigated by IIM via numerous mechanisms. This includes acceleration of the electron transport chain 386 

which sets the pace for OXPHOS and contains iron-sulfur cluster and heme prosthetic groups.8,12 Iron 387 

is also embedded in enzymes of the Krebs cycle,fatty acid ß-oxidation, and carnitine synthesis,42 and is 388 

active in catalase which maintains a permissive redox environment for efficient OXPHOS activity.43 In 389 

human CHF, myocardial ID is linked to diminished catalase and Krebs cycle enzyme levels.44 In in 390 

vitro and animal studies, cellular ID impairs cardiomyocyte and skeletal muscle energetics even in the 391 

absence of anemia.13,14,45 Indeed, in rats with ID anemia, correction of anemia but not ID failed to 392 
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improve submaximal exercise capacity (which is determined by oxidative enzymes).15 In contrast, 393 

correction of ID but not anemia improved submaximal exercise performance within 15 hours of iron 394 

infusions.46  395 

 396 

Besides skeletal muscle energetic augmentation by IIM, several other aspects of our study bear special 397 

emphasis. First, symptoms were improved by IIM at 2 weeks, with reductions in NYHA class and Borg 398 

score corroborated by attenuations in resting respiratory rate (presumably due to improved respiratory 399 

muscle energetics). Apart from diuretics, no other contemporary CHF therapy can likely match this 400 

pace of symptomatic benefit. Second, this is the first trial to test the utility of infusing a total repletion 401 

dose of iron at a single sitting. By 2 weeks, we achieved the same degree of biochemical iron repletion 402 

as was achieved by 6 to 12 months in prior studies.4 Third, FERRIC-HF II is the first to show, in a 403 

double-blind placebo-controlled trial, that IIM ameliorates ID in CHF patients.  404 

 405 

Our study has limitations. We were underpowered to detect differences in certain clinical indices (e.g., 406 

peak VO2 and 6-min walk distance), in safety endpoints such as rare side-effects of IIM, and in the 407 

anemic and non-anemic subgroups. This might explain some of our modest correlations and the near-408 

significant effect of IIM on PCr t1/2 in non-anemics which merits further study. We did not measure 409 

skeletal muscle blood flow so cannot exclude improved limb perfusion as a contributor to enhanced 410 

muscle energetics. However, blood supply does not limit skeletal muscle metabolism in CHF,39 so it is 411 

unlikely that any theoretical increase in perfusion with IIM could influence PCr t1/2. We chose a short 412 

trial duration to minimize attribution of results to skeletal muscle exercise adaptation, so the energizing 413 

effect of IIM might have been greater with a longer trial. No adjustments were made for multiple 414 

comparisons and we used the last observation carry forward method for imputations.  415 

 416 
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FERRIC-HF II has potentially important clinical ramifications. Despite data that ID is common and 417 

adverse in CHF,1,2 and that its correction confers benefits,3,4 clinical uptake of routine iron repletion, 418 

particularly in non-anemic patients, remains poor. One potential barrier to adoption is the lack of 419 

mechanistic data explaining how iron could trigger such profound exercise benefits despite minimal 420 

changes in Hb. Our findings should therefore go some way to reassure clinicians that the benefits of IV 421 

iron are real and appear to have a sound mechanistic underpinning. Second, our data reinforces the 422 

importance of routinely checking iron indices in CHF patients, and emphasizes that the treatment target 423 

should be iron status and not necessarily Hb. Third, our study suggests that a single total repletion dose 424 

of IIM can safely replete iron stores with clinical benefits.   425 

 426 

In conclusion, the FERRIC-HF II trial has shown that, in patients with CHF and ID, a total repletion 427 

dose of IIM given at a single sitting is well tolerated and associated with faster skeletal muscle post-428 

exercise PCr recovery kinetics at 2 weeks, implying better mitochondrial function. Enhanced skeletal 429 

muscle energetics occurs despite no change in Hb, but is accompanied by improved symptoms. 430 

Augmented skeletal muscle energetics might therefore be an important mechanism via which iron 431 

repletion improves exercise capacity in CHF despite minimal changes in Hb. 432 

433 
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  All patients  Anemic patients  Nonanemic patients 

  
Placebo  
(n=19)   

Iron Isomaltoside  
(n=21)   

 Placebo 
(n=9) 

Iron Isomaltoside  
(n=11) 

 Placebo 
(n=10) 

Iron Isomaltoside  
(n=10) 

Demographics         
 Age, years 62±13 70±12  63±15 74±6  61±11 65±15 
 Male gender, n (%) 13(68) 16(76)  7(78) 11(100)  6(60) 5(50) 
 Caucasian ethnicity, n (%) 14(74) 17(81)  6(67) 10(91)  8(80) 7(70) 
 Body mass index, kg/m2 30±7 29±4  29±6 29±4  30±8 29±5 
 Ischemic etiology, n (%) 10(53) 11(52)  6(67) 7(64)  4(40) 4(40) 
Comorbidities         
 Coronary artery disease 11(58) 13(62)  6(67) 9(82)  5(50) 4(40) 
 Hypertension 13(64) 13(62)  5(56) 8(73)  8(80) 5(50) 
 Hyperlipidemia 7(37) 7(33)  2(22) 6(55)  5(50) 1(10) 
 Diabetes mellitus 10(53) 10(48)  6(67) 7(64)  4(40) 3(30) 
 Atrial fibrillation/flutter 4(21) 6(29)  2(22) 3(27)  2(20) 3(30) 
Clinical and quality of life         
 LV ejection fraction, % 37±8 37±8  37±8 36±9  37±7 39±7 
 NYHA class 2.4±0.5 2.5±0.5  2.5±0.5 2.4±0.5  2.5±0.5 2.4±0.5 
 NYHA class III, n (%) 10(53) 9(43)  4(44) 6(55)  6(60) 3(30) 
 Systolic BP, mm Hg 122±17 124±16  115±14 125±14  128±17 124±18 
 Diastolic BP, mm Hg 71±14 73±10  67±11 71±8  75±16 76±12 
 Heart rate, beats/min 71±11 72±10  67±6 71±6  74±13 72±13 

 Respiratory rate, breaths/min 16±1 16±1  16±1 16±1  16±1 15±1 
 KCCQ overall score 53±20 64±23  58±27 66±19  48±13 62±28 
Exercise parameters         
 Peak VO2, mL/kg/min 14.3±3.1 15.8±4.3  12.7±3.2 16.0±5.6  15.8±2.2 15.6±2.5 
 Peak respiratory exchange ratio 1.06±0.11 1.10±0.10  1.05±0.10 1.14±0.10  1.07±0.12 1.07±0.10 
 CPET exercise duration, s  582±202 627±241  551±252 636±289  610±153 617±191 
 6 min walking distance, m 313±67 324±79  295±70 299±84  330±64 351±68 
 Pre-exercise Borg dyspnea score 11±1 11±1  11±1 11±2  11±1 11±1 
 Post-exercise Borg dyspnea score 15±2 14±3  15±2 15±3  14±2 14±2 

Table 1. Baseline characteristics. Data are mean±SD, numbers(%), or median (interquartile range).  
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  All patients  Anemic patients  Nonanemic patients 

  
Placebo  
(n=19)   

Iron Isomaltoside  
(n=21)   

 Placebo  
(n=9) 

Iron Isomaltoside  
(n=11) 

 Placebo  
(n=10) 

Iron Isomaltoside  
(n=10) 

31P MRS measurements         
 Resting PCr, mM 39±4 40±6  39±4 42±7  40±5 38±5 
 Exercise PCr, mM  26±4 25±6  23±5 25±7  28±3 25±5 
 Resting Pi, mM 4.3±1.0 4.0±0.7  4.4±1.0 3.9±0.8  4.1±1.1 4.2±0.6 
 Exercise Pi, mM 18.3±6.8 19.1±7.2  18.8±6.9 20.7±8.8  17.9±7.1 17.3±4.8 
 Resting pH 7.01±0.04 7.02±0.03  7.01±0.02 7.02±0.02  7.01±0.06 7.01±0.03 
 Exercise pH 7.00±0.05 6.96±0.10  7.00±0.04 6.97±0.07  7.00±0.06 6.95±0.13 
 Resting ADP, µM 8±5 8±6  8±6 7±4  8±5 10±8 
 Exercise ADP, µM 34±12 38±21  40±15 40±26  28±5 35±15  
 ADP t1/2, s 23±6 25±9  24±6 26±12  23±6 24±4 
 PCr t1/2, s 33±9 35±12  36±8 38±14  29±8 31±9 
Laboratory measurements         
 Ferritin, ng/mL 59(39-79) 34(18-50)  45(26-64) 33(18-48)  77(64-90) 44(28-60) 
 Transferrin saturation, % 18±10 21±8  12±5 16±7  24±10 25±6 
 Soluble transferrin receptor, mg/L 4.0±1.5 3.6±0.8  4.6±1.5 3.9±0.6  3.4±1.3 3.4±0.9 
 Hemoglobin, g/L 128±20 130±15  114±19 119±8  140±11 142±10 
 Creatinine, µmol/L 108±34 121±39  129±32 138±21  89±24 103±46 
 Aspartate transaminase, iU/L 22±9 22±8  25±8 21±7  20±10 24±8 
 C-reactive protein, mg/L 5(1-10) 6(3-9)  12(2-22) 5(3-8)  3(1-6) 6(1-11) 
 NT-proBNP, pg/mL 462(206-855) 1486(245-2054)  790(291-1944) 2696(423-3907)  316(133-629) 696(245-1900) 
Treatment         
 Diuretics, n (%) 12(63) 14(67)  8(89) 7(64)  4(40) 7(70) 
 ACE-inhibitor or ARB, n (%) 17(89) 16(76)  7(78) 9(82)  10(100) 7(70) 
 Beta-blockers, n (%) 16(84) 18(86)  7(78) 10(91)  9(90) 8(80) 
 Spironolactone, n (%) 12(63) 12(57)  5(56) 5(45)  7(70) 7(70) 
 Digoxin, n (%) 4(21) 6(29)  3(33) 2(18)  1(10) 4(40) 
 Anticoagulants, n (%) 3(16) 6(29)  1(11) 3(27)  2(20) 3(30) 
 Antiplatelets, n (%) 13(68) 13(62)  5(56) 8(73)  8(80) 5(50) 

Table 1. Baseline characteristics (continued). Data are mean±SD, numbers (%), or median (interquartile range). 
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Placebo 
(n=19) 

Iron Isomaltoside 
(n=21) 

Difference 
(95% CI) 

ANCOVA 
P-value 

Primary endpoint         
PCr t1/2, s 36±11 30±7 -6.8(-11.5,-2.1) 0.006 

Secondary endpoints     
ADP t1/2, s 24±9 20±6 -5.3(-9.7,-0.9) 0.02 
Hemoglobin, g/L 127±14 130±13 2.4(-3.5,8.4) 0.41 
Ferritin, ng/mL 57(41-84) 369(232-495) 304(217,391) <0.0001 
Transferrin saturation, % 21±9 29±6 6.8(2.7,10.8) 0.002 
NYHA class 2.6±0.5 2.3±0.5 -0.23(-0.46,-0.01) 0.04 
6 min walking distance, m 324±67 347±72 15(-10,40) 0.24 
Pre-exercise Borg dyspnea score 8±2 7±1 -0.6(-1.5,0.2) 0.12 
Post-exercise Borg dyspnea score 15±2 12±3 -2.0(-3.7,-0.3) 0.02 
Peak VO2/kg, mL/kg/min 14.9±3.5 16.8±4.7 0.5(-1.0,1.9) 0.54 
KCCQ overall score 55±24 68±17 12.7(-7.7,33.2) 0.18 
LV ejection fraction, % 39±8 41±7 2.2(-1.1,5.6) 0.19 
NT-proBNP, pg/mL 334(180-827) 1623(281-2453) 289(-461,1040) 0.44 
Resting PCr, mM 40±5 40±6 -0.2(-3.5,3.0) 0.89 
Exercise PCr, mM 26±6 25±6 -0.3(-3.6,3.0) 0.86 
Resting Pi, mM 3.8±1.1 4.0±1.0 0.3(-0.3,0.8) 0.33 
Exercise Pi, mM 18.2±7.2 17.6±6.7 -0.9(-5.0,3.2) 0.66 
Resting pH  7.01±0.3 7.01±0.3 -0.01(-0.02,0.01) 0.44 
Exercise pH 6.99±0.06 6.97±0.07 0(-0.04,0.04) 0.97 
Resting ADP, µM 7±5 8±5 0.9(-2.0,3.8) 0.52 
Exercise ADP, µM 34±15 37±18 1.2(-8.1,10.5) 0.80 
Safety endpoints     
Systolic blood pressure, mm Hg 119±14 127±12 7.1(-0.3,14.5) 0.06 
Diastolic blood pressure, mm Hg 72±13 74±10 0.7(-5.5,6.8) 0.83 
Heart rate, beats/min 74±12 71±10 -2.9(-8.8,3.1) 0.34 
Respiratory rate, breaths/min 16±1 15±1 -0.7(-1.2,-0.2) 0.009 
Creatinine, μmol/L 103±38 106±41 -3(-26,20) 0.80 
Aspartate transaminase, iU/L 22±6 30±26 8(-4,21) 0.21 
C-reactive protein, mg/L 4(2-8) 6(2-11) 0.4(-3.0,3.9) 0.79 

Table 2. Endpoints for total population 
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Placebo Iron Isomaltoside 

Difference 
(95% CI) 

ANCOVA 
P-value 

Anemic patients n=9 n=11   
PCr t1/2, s 38±12 30±9 -8.4(-16.7,-0.2) 0.04 
ADP t1/2, s 24±9 18±7 -6.3(-13.5,0.9) 0.08 
Hemoglobin, g/dL 117±12 124±6 5.5(-2.7,13.8) 0.18 
Ferritin, ng/mL 45±25 456±161 413(295,530) <0.0001 
NYHA class 2.7±0.5 2.5±0.5 -0.3(-0.6,0.1) 0.09 
Non-anemic patients n=10 n=10   
PCr t1/2, s 35±11 31±5 -5.2(-10.6,0.2) 0.06 
ADP t1/2, s 24±9 21±5 -4.4(-9.6,0.9) 0.10 
Hemoglobin, g/dL 135±9 137±15 0.5(-8.3,9.3) 0.72 
Ferritin, ng/mL 67±24 274±149 176(68,284) 0.003 
NYHA class 2.6±0.5 2.2±0.4 -0.2(-0.6,0.1) 0.23 

 
Table 3. Endpoints for anemic and non-anemic subgroups 

 

 

 

  



	
Fig. 1. Dynamic Quadriceps 31P Magnetic Resonance Spectroscopy (31P MRS). The figure shows the experimental setup and example data from multiple 
studies. Experiments are performed with subjects supine (A) and 31P coil and leg weight attached prior to entry into the magnet bore. 1H scout images of quadriceps 
are used to optimize positioning (B). 31P MRS data are shown as stacked plot of all phosphometabolite changes (C) and a timecourse of phosphocreatine signal (D) 
acquired during two bouts of exercise and recovery; PCr t1/2 is calculated from the recovery curve (interrupted line) shown in D. PDE = phosphodiester. 



Assessed	for	eligibility	
(n=83	)

Excluded	(n=43)
- Not	meeting	inclusion	criteria	(n=33)
- Declined	participation	(n=8)	
- Other	reasons	(n=2)

Stratified	Randomization
(n=40)

Anemic group
(n=20)

Allocated	to	IIM	(n=11)
-Received	IIM	(n=11)

Allocated	to	Placebo	(n=9)
-Received	saline	(n=9)

Lost	to	follow-up	(n=0	)
Hospitalised	(n=1)
Side	effect	(n=1)

Lost	to	follow-up	(n=0	)
Hospitalised	(n=0)
Side	effect	(n=1)

Analyzed	(n=11) Analyzed	(n=9)

Non-anemic group
(n=20)

Allocated	to	IIM	(n=10)
-Received	IIM	(n=10)

Allocated	to	Placebo	(n=10)
-Received	saline	(n=10)

Lost	to	follow-up	(n=0)
Hospitalised	(n=0)
Side	effect	(n=0)

Lost	to	follow-up	(n=0	)
Hospitalised	(n=0	)
Side	effect	(n=0)

Analyzed	(n=10) Analyzed	(n=10)

EN
RO

LL
M
EN

T
AL

LO
CA

TI
O
N

FO
LL
O
W
-U
P

AN
AL
YS
IS

	

Fig. 2. FERRIC-HF II CONSORT Diagram. Patient disposition during the trial.
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Fig. 3. Primary Endpoint. Individual changes in PCr t1/2 with Iron Isomaltoside and saline placebo in total cohort. 


