15 research outputs found
Evaluation of Arthropod Diversity and Abundance in Contrasting Habitat, Uyo, Akwa Ibom State, Nigeria
This study was conducted to determine the abundance and diversity of soil arthropods in Anua and Ekpri Nsukara farmland communities, Uyo, Nigeria from September to November, 2012. Soil arthropods were sampled using pitfall trap. A total of 707 Individuals of soil arthropods were encountered during the study period. Of the total number, 203 individuals were encountered in Anua while 504 in Ekpri Nsukara. Hymenoptera were the dominant taxa while the least was Blattodea in the two communities. Higher Shannon diversity index 1.3 was recorded in Anua while lower diversity index 0.86 was recorded in Ekpri Nsukara. Evenness ranged from 0.006 to 0.80 in Ekpri Nsukara and 0.02 to 0.61 in Anua. The lower abundance of soil arthropod in Anua community as compared to Ekpri Nsukara could be attributed to the partially open vegetation which exposes the arthropods to avoidable predators. © JASE
PIDDosome-independent tumor suppression by Caspase-2
The PIDDosome, a multiprotein complex constituted of the ‘p53-induced protein with a death domain (PIDD), ‘receptor-interacting protein (RIP)-associated ICH-1/CED-3 homologous protein with a death domain' (RAIDD) and pro-Caspase-2 has been defined as an activating platform for this apoptosis-related protease. PIDD has been implicated in p53-mediated cell death in response to DNA damage but also in DNA repair and nuclear factor kappa-light-chain enhancer (NF-κB) activation upon genotoxic stress, together with RIP-1 kinase and Nemo/IKKγ. As all these cellular responses are critical for tumor suppression and deregulated expression of individual PIDDosome components has been noted in human cancer, we investigated their role in oncogenesis induced by DNA damage or oncogenic stress in gene-ablated mice. We observed that Pidd or Caspase-2 failed to suppress lymphoma formation triggered by γ-irradiation or 3-methylcholanthrene-driven fibrosarcoma development. In contrast, Caspase-2 showed tumor suppressive capacity in response to aberrant c-Myc expression, which did not rely on PIDD, the BH3-only protein Bid (BH3 interacting domain death agonist) or the death receptor ligand Trail (TNF-related apoptosis-inducing ligand), but associated with reduced rates of p53 loss and increased extranodal dissemination of tumor cells. In contrast, Pidd deficiency associated with abnormal M-phase progression and delayed disease onset, indicating that both proteins are differentially engaged upon oncogenic stress triggered by c-Myc, leading to opposing effects on tumor-free survival
Monitoring of Poyang lake water for sewage contamination using human enteric viruses as an indicator
Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more?
Aberrations in proteins that control apoptosis and cell survival are common in cancer. These aberrations often reside in signalling proteins that control the activation of the apoptotic machinery or in the Bcl-2 family of proteins that control caspase activation. Recent evidence suggests that caspase 2, one of the most evolutionarily conserved caspases, may have multiple roles in the DNA damage response, cell cycle regulation and tumour suppression. These findings are unexpected and have important implications for our understanding of tumorigenesis and the treatment of cancer.Sharad Kuma
The enigma of caspase-2: the laymen's view
International audienceProteolysis of cellular substrates by caspases (cysteine-dependent aspartate-specific proteases) is one of the hallmarks of apoptotic cell death. Although the activation of apoptotic caspases is considered a 'late-stage' event in apoptosis signaling, past the commitment stage, one caspase family member, caspase-2, splits the cell death community into half-those searching for evidence of an apical initiator function of this molecule and those considering it as an amplifier of the apoptotic caspase cascade, at best, if relevant for apoptosis at all. This review screens past and present biochemical as well as genetic evidence for caspase-2 function in cell death signaling and beyond