42 research outputs found

    Long discontinuous fiber composite structure: Forming and structural mechanics

    Get PDF
    Cost effective composite structure has motivated the investigation of several new approaches to develop composite structure from innovative material forms. Among the promising new approaches is the conversion of planar sheet to components of complex curvature through sheet forming or stretch forming. In both cases, the potential for material stretch in the fiber direction appears to offer a clear advantage in formability over continuous fiber systems. In the present study, the authors have established a framework which allows the simulation of the anisotropic mechanisms of deformation of long discontinuous fiber laminates wherein the matrix phase is a viscous fluid. The initial study focuses upon the establishment of micromechanics models for prediction of the effective anisotropic viscosities of the oriented fiber assembly in a viscous matrix. Next, the developed constitutive relation is employed through an analogy with incompressible elasticity to exercise the finite element technique for determination of local fiber orientation and laminate thickness after forming. Results are presented for the stretch bending of a curved beam from an arbitrary composite laminate and the bulging of a clamped sheet. Structural analyses are conducted to determine the effect of microstructure on the performance of curved beams manufactured from long discontinuous fiber composites. For the purposes of this study, several curved beams with ideal and non-ideal microstructures are compared for response under pure bending. Material parameters are determined from a separate microstructural analysis

    Increased function of pronociceptive TRPV1 at the level of the joint in a rat model of osteoarthritis pain

    Get PDF
    Objectives Blockade of transient receptor potential vanilloid 1 (TRPV1) with systemic antagonists attenuates osteoarthritis (OA) pain behaviour in rat models, but on-target-mediated hyperthermia has halted clinical trials. The present study investigated the potential for targeting TRPV1 receptors within the OA joint in order to produce analgesia. Methods The presence of TRPV1 receptors in human synovium was detected using western blotting and immunohistochemistry. In a rat model of OA, joint levels of an endogenous ligand for TRPV1, 12- ydroxyeicosatetraenoic acid (12-HETE), were quantified using liquid chromatography-tandem mass spectrometry (LCMS/MS). Effects of peripheral administration of the TRPV1 receptor antagonist JNJ-17203212 on afferent fibre activity, pain behaviour and core body temperature were investigated. Effects of a spinal administration of JNJ-17203212 on dorsal horn neuronal responses were studied. Results We demonstrate increased TRPV1 immunoreactivity in human OA synovium, confirming the diseased joint as a potential therapeutic target for TRPV1-mediated analgesia. In a model of OA pain, we report increased joint levels of 12-HETE, and the sensitisation of joint afferent neurones to mechanical stimulation of the knee. Local administration of JNJ- 17203212 reversed this sensitisation of joint afferents and inhibited pain behaviour (weight-bearing asymmetry), to a comparable extent as systemic JNJ- 17203212, in this model of OA pain, but did not alter core body temperature. There was no evidence for increased TRPV1 function in the spinal cord in this model of OA pain. Conclusions Our data provide a clinical and mechanistic rationale for the future investigation of the therapeutic benefits of intra-articular administration of TRPV1 antagonists for the treatment of OA pain

    Railway bridge structural health monitoring and fault detection: state-of-the-art methods and future challenges

    Get PDF
    Railway importance in the transportation industry is increasing continuously, due to the growing demand of both passenger travel and transportation of goods. However, more than 35% of the 300,000 railway bridges across Europe are over 100-years old, and their reliability directly impacts the reliability of the railway network. This increased demand may lead to higher risk associated with their unexpected failures, resulting safety hazards to passengers and increased whole life cycle cost of the asset. Consequently, one of the most important aspects of evaluation of the reliability of the overall railway transport system is bridge structural health monitoring, which can monitor the health state of the bridge by allowing an early detection of failures. Therefore, a fast, safe and cost-effective recovery of the optimal health state of the bridge, where the levels of element degradation or failure are maintained efficiently, can be achieved. In this article, after an introduction to the desired features of structural health monitoring, a review of the most commonly adopted bridge fault detection methods is presented. Mainly, the analysis focuses on model-based finite element updating strategies, non-model-based (data-driven) fault detection methods, such as artificial neural network, and Bayesian belief network–based structural health monitoring methods. A comparative study, which aims to discuss and compare the performance of the reviewed types of structural health monitoring methods, is then presented by analysing a short-span steel structure of a railway bridge. Opportunities and future challenges of the fault detection methods of railway bridges are highlighted

    Correlations between milk and plasma levels of amino and carboxylic acids in dairy cows.

    Get PDF
    The objective of this study was to investigate the relationship between the concentrations of 19 amino acids, glucose, and seven carboxylic acids in the blood and milk of dairy cows and their correlations with established markers of ketosis. To that end, blood plasma and milk specimens were collected throughout lactation in two breeds of dairy cows of different milk yield. Plasma concentrations of glucose, pyruvate, lactate, α-aminobutyrate, β-hydroxybutyrate (BHBA), and most amino acids, except for glutamate and aspartate, were on average 9.9-fold higher than their respective milk levels. In contrast, glutamate, aspartate, and the Krebs cycle intermediates succinate, fumarate, malate, and citrate were on average 9.1-fold higher in milk than in plasma. For most metabolites, with the exception of BHBA and threonine, no significant correlations were observed between their levels in plasma and milk. Additionally, milk levels of acetone showed significant direct relationships with the glycine-to-alanine ratio and the BHBA concentration in plasma. The marked decline in plasma concentrations of glucose, pyruvate, lactate, and alanine in cows with plasma BHBA levels above the diagnostic cutoff point for subclinical ketosis suggests that these animals fail to meet their glucose demand and, as a consequence, rely increasingly on ketone bodies as a source of energy. The concomitant increase in plasma glycine may reflect not only the excessive depletion of protein reserves but also a potential deficiency of vitamin B6

    Effects of feeding wheat straw and middlings ensiled with whey on digestibility and growth of cattle

    No full text
    Two studies were conducted with the objective of evaluating the effects of feeding different levels of whey ensiled with wheat straw and wheat middlings (whey silage) compared to control diets on production parameters in growing cattle. Whey silage was included in diets at 55 and 65.5% on a dry matter basis with net energy for maintenance and crude protein calculated to be similar to control diets containing a combination of alfalfa hay, corn silage and wheat middlings at 1.74 Mcal kg-1 and 13.4%, respectively. Dry matter intake averaged 8.41 versus 8.91 kg d-1 (P \u3c 0.05) and 8.68 versus 7.09 kg d-1 (P \u3c 0.05) when whey silage was included at either 55 or 65.5% of the diets compared to the control diets. Average daily gains of cattle fed whey silage incorporated at 55% was 1.00 versus 1.14 kg d-1 (P \u3c 0.05), and reflected the difference in dry matter intake; no differences (P \u3e 0.05) in feed efficiency (8.73:1 versus 8.71:1) were observed. However, the higher dry matter intake (DMI) of cattle fed diets with whey silage incorporated at 65.5% did not (P \u3e 0.05) translate into higher average daily gain (1.23 versus 1.18 kg d-1), resulting in a higher (P \u3c 0.05) feed to gain (7.00:1 versus 6.01:1) for the whey-based silage diets. Incorporation of whey silage in diets at 55% increased (P \u3e 0.05) the dry matter digestibility by 12%, whereas incorporation at 65.5% decreased (P \u3c 0.05) dry matter digestibility by 12% compared to control diets, with no differences (P \u3e 0.05) in percent neutral detergent fiber digestibility (NDFD) at either level. We conclude that whey silage can be included at between 55 and 65.5% of the total dry matter in diets with no adverse effects on production compared to cattle fed diets containing a combination of alfalfa hay, corn silage and wheat middlings

    The feasibility of feeding high levels of whey silage and effects on production in growing cattle

    No full text
    Two studies were conducted with the objective of evaluating the feasibility of using whey ensiled with wheat straw and wheat middlings (whey silage), fed at 98% of the diet and determine the levels of production that can be obtained by feeding it to growing cattle. In each study, the control diets contained a diet comprising of wheat middlings, alfalfa hay and corn silage and were isocaloric with the whey silage diets. The average daily gains and feed efficiencies of cattle fed on the whey silage diets were similar (P\u3e0.05) to the control diets. However, in the second study, dry matter intake was reduced (P\u3c0.05) in animals fed the whey silage diet compared to the control. Whey silage can be included at 98% of the total diet with no adverse effects on gain and feed efficiency. This study provides cattle producers with low cost feeding options that use crop residues and agricultural by products such as whey which can be ensiled and fed to growing cattle

    Association analyses of a SNP in the promoter of IGF1 with fat deposition and carcass merit traits in hybrid, Angus and Charolais beef cattle

    No full text
    Summary A SNP in the promoter region of insulin like growth factor-1 (IGF1) (c.-512C>T) was analysed for associations with 10 fat deposition and carcass merit traits in hybrid (n = 455), Angus (n = 204) and Charolais (n = 186) beef cattle populations. Significant associations of the SNP were found for ultrasound backfat thickness (P = 0.030), carcass average backfat (P = 0.015) and carcass lean meat yield (LMY) (P = 0.023) in the Angus beef population, with the 'CC' genotype showing higher fat depth and lower LMY than the 'TT' genotype. Analyses of transcription factor binding sites based on transcription element search system prediction revealed that the 'C' allele introduces a binding site for nuclear factor I, which has an adipose tissue-specific regulatory role and thus may contribute to the SNP effect on fat deposition in the population of pure Angus cattle, a breed with greater fat depth than the hybrid and Charolais breeds
    corecore