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ABSTRACT: The objective of this study was to investigate the relationship
between the concentrations of 19 amino acids, glucose, and seven carboxylic
acids in the blood and milk of dairy cows and their correlations with established
markers of ketosis. To that end, blood plasma and milk specimens were collected
throughout lactation in two breeds of dairy cows of different milk yield. Plasma
concentrations of glucose, pyruvate, lactate, α-aminobutyrate, β-hydroxybutyrate
(BHBA), and most amino acids, except for glutamate and aspartate, were on
average 9.9-fold higher than their respective milk levels. In contrast, glutamate,
aspartate, and the Krebs cycle intermediates succinate, fumarate, malate, and
citrate were on average 9.1-fold higher in milk than in plasma. For most
metabolites, with the exception of BHBA and threonine, no significant
correlations were observed between their levels in plasma and milk. Additionally,
milk levels of acetone showed significant direct relationships with the glycine-to-
alanine ratio and the BHBA concentration in plasma. The marked decline in plasma concentrations of glucose, pyruvate, lactate,
and alanine in cows with plasma BHBA levels above the diagnostic cutoff point for subclinical ketosis suggests that these animals
fail to meet their glucose demand and, as a consequence, rely increasingly on ketone bodies as a source of energy. The
concomitant increase in plasma glycine may reflect not only the excessive depletion of protein reserves but also a potential
deficiency of vitamin B6.
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■ INTRODUCTION

During early lactation, calories expended by high-yielding dairy
cows for milk production exceed those available from feed
intake, thus resulting in a negative energy balance (NEB).1

NEB is characterized by mobilization of body fat, protein, and
mineral stores to satisfy the requirements for milk production.
Dairy cows that do not cope well with NEB may develop ketosis,
which can affect milk production and reproduction.2 The
magnitude of metabolic stress during early lactation depends on
many factors.3 Feeding regime is critical, but the large variation in
metabolic status observed among animals of similar productivity
consuming the same diet points to individually varying
predispositions.4,5 Knowledge of the metabolic adaptation of
individual animals to the challenge of lactation and failure to do so
is of great relevance to the breeding and welfare of dairy cows.6

Subclinical ketosis in dairy cows occurs typically in early
lactation and coincides with peak milk production. It is
characterized by supraphysiological levels of ketone bodies in
tissues and body fluids that exceed physiological increases in
response to the requirement of the mammary gland for acetate
and β-hydroxybutyrate (BHBA) for de novo fatty acid
synthesis.7 Blood BHBA concentration is the most commonly
used marker for the detection of ketosis.8 Threshold blood

BHBA concentrations suggested for the discrimination between
healthy cows and animals with subclinical ketosis range
between 1.0 and 1.4 mmol/L.9−11 Blood collection, however,
is an invasive procedure and difficult to perform on a regular
basis. Milk, in contrast, is a readily available biofluid, and the
introduction of dipstick assays for the semiquantitative
determination of BHBA and acetoacetate in milk has made
cow-side testing for ketosis feasible.12 Elevated milk BHBA and
acetoacetate are accepted biomarkers for the detection of acute
ketosis. More recently, the milk glycerophosphocholine to
phosphocholine ratio in the first month of lactation has shown
promise as a prognostic marker in assessing risk of developing
ketosis, thereby enabling early intervention in cows susceptible
to disease and selection of metabolically stable animals for
breeding purposes.13

A further advantage of milk in assessing metabolic status is
the lower susceptibility of milk metabolite concentrations to
endogenously and exogenously driven oscillations. For
example, the blood concentrations of both BHBA and urea

Special Issue: Agricultural and Environmental Proteomics

Received: July 1, 2013
Published: August 9, 2013

Article

pubs.acs.org/jpr

© 2013 American Chemical Society 5223 dx.doi.org/10.1021/pr4006537 | J. Proteome Res. 2013, 12, 5223−5232

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Regensburg Publication Server

https://core.ac.uk/display/33179622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
pubs.acs.org/jpr


increase after feeding.14−17 Such and other diurnal variation
may also, at least in part, explain conflicting reports on the
relationship between concentrations of ketone bodies and other
metabolites in blood and milk. Generally, molar ratios
and correlation coefficients close to 1 have been reported for
blood and milk acetone.11 In contrast, varying molar ratios and
correlation coefficients between blood and milk BHBA and
acetoacetate have been reported, which may also depend on the
breed’s usage of BHBA for fatty acid synthesis and conversion
of acetoacetate to butyrate.11,12,18 A recent untargeted mass
spectrometry-based study of five Holstein cows found overall
little correlation between global blood and milk metabolomes,
albeit there were a few exceptions of which only creatinine
could be identified.19 Maher et al., on the other hand, detected
several significant correlations between milk and blood
metabolites, including trimethylamine, dimethylsulfone, valine,
fumarate, trimethylamine-N-oxide, and glycerophosphocholine,
in a proton magnetic resonance spectroscopy (NMR)-based
study of 54 Holstein cows.20

The present study builds on our recent analysis of different milk
metabolites by high-resolution NMR and gas chromatography−
mass spectrometry (GC−MS) in two different breeds of dairy
cows, namely, Brown Swiss and Simmental, during early and late
lactation.21 Here, 27 metabolites that had been detected in milk by
GC−MS were analyzed in blood plasma, and their levels were
correlated to those previously determined in milk collected at the
same time. Albeit not the first study of its kind, it exceeds previous
investigations on relationships between concentrations of
metabolites in blood and milk with regard to either the number
of animals and/or the number of metabolites studied and extends
them beyond the first few weeks of lactation.11,19,20,22 The findings
reported here increase our understanding of the metabolic changes
that dairy cows undergo during lactation and their possible
association with the development of postpartum ketosis.

■ EXPERIMENTAL SECTION

Collection of Blood and Milk Samples

Samples were collected at two research farms near Munich,
Germany, from cows with high genetic merit representing
different milk production levels. Cows were kept in loose
housing and fed a partial mixed ration based on corn and grass
silage ad libitum. Concentrates were fed additionally according
to milk yield. At the research farm Veitshof (Freising,
Germany) specimens were collected from high producing
multiparous Brown Swiss cows with a lactational milk yield
(305 d) of 9,200 kg. Cows were in early, mid, or late lactation,
with days in milk (DIM) of (mean ± standard deviation) 44 ±
27 (N = 28), 143 ± 22 (N = 7), and 347 ± 175 (N = 18),
respectively. At the Bavarian State Research Center for
Agriculture (Grub, Germany), specimens were obtained from
multiparous Simmental cows with a lactational milk yield
(305 d) of 8,300 kg. Cows were in early and late lactation with
DIM of 22 ± 11 (N = 14) and 256 ± 49 (N = 13), respectively.
Supplemental Figure S1 shows the number of specimens
collected from the two breeds with respect to DIM. All cows
were milked twice daily, and morning milk was collected for
further analysis. Venous blood was obtained at 7:00 a.m. from
the Vena jugularis into EDTA-coated vacuum tubes for the
Simmental cows or into sodium fluoride (NaF)-containing
tubes for the Brown Swiss cows. The plasma was centrifuged
immediately after sampling at 4 °C for 15 min at 2000 × g and
stored frozen until analysis.

GC−qMS of Amino Acids

Plasma levels of 17 proteinogenic amino acids (aa) as well as
those of ornithine and α-aminobutyric acid (AABA) were
determined in 20-μL aliquots of plasma by means of a fully
automated quantitative GC−qMS method employing propyl
chloroformate derivatization and stable isotope-labeled amino
acids as internal standards.23 As reported previously, thermal
instability of the propylformate derivatives of arginine and
cysteine precluded their measurement, while interaction of the
free hydroxyl group of serine with the GC liner rendered its
quantitation unreliable.23

GC−MS of β-Hydroxybutyrate, Glucose, and Citrate Cycle
Intermediates

Quantitative analysis of BHBA, glucose, pyruvate, lactate, and
intermediates of the citrate cycle was performed in 10-μL
aliquots of plasma that were subjected to online methoximation/
silylation in the presence of stable isotope-labeled internal standards
and GC−MS on a Pegasus GC−electron ionization (EI)−time-
of-flight (TOF)−MS instrument (Leco, St. Joseph, MI, USA) as
described previously.21

Limits of Quantification

The lower limit of quantification (LLOQ) was defined
individually for each metabolite as the lowest point of the
calibration curve that still yielded an accuracy of 80−120%.
This is in agreement with the FDA guide for bioanalytical
method validation.24 The LLOQs of the AAs and the remaining
analytes were determined for injection volumes of 20 and 10 μL,
respectively.

Statistics

To analyze correlations between all available pairs of milk and
blood metabolites in specimens collected at the same time,
Pearson correlation coefficients and corresponding P-values
were calculated using the statistical analysis tool R version
2.11.1 based on a two-tailed test. Resulting P-values were
corrected for multiple testing by controlling the false discovery
rate (FDR) according to the method of Benjamini and
Hochberg at the 10% level.25 In the analysis of correlations
one can distinguish two cases: direct and indirect correlations. If
one variable is directly influenced by another one, for example,
if a compound is a direct product of another compound in a
metabolic reaction, this is called a direct correlation. Indirect
correlations arise when two variables are directly correlated to a
third variable, but not to each other. In this case the two
variables will also show a high correlation coefficient due to
their shared connection to the third variable. To analyze only
direct correlations and to exclude indirect correlations, partial
correlation analyses were carried out based on a method
proposed by de la Fuente et al.26 A partial correlation
coefficient quantifies the correlation between two variables
when conditioning one (first order) or several other variables
(second or higher order). Partial correlation coefficients were
calculated using the R function pcor.test available at http://
www.yilab.gatech.edu/pcor.html.27 Each significant correlation
where the corresponding metabolites showed a significant
correlation to at least one additional metabolite was
recalculated using first order partial correlation. Calculations
of second (or higher) order partial correlations were not
performed due to the limited number of samples and the
limited interconnection of the quantified metabolites. If a
partial correlation yielded an insignificant result according to
the significance level from the FDR calculation, the correlation
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was termed insignificant. A large number of highly correlated
pairs did not reach the significance level after correction for
indirect correlations, indicating that these pairs are not directly
correlated. Please note that metabolites correlating due to
indirect connections via unknown or not-measured metabolites
cannot be identified and, thus, are deemed as directly
connected. Interactions that remained significant after calcu-
lation of partial correlations were marked in red and green for
negative correlation and positive correlation, respectively, in
Tables 2 and 3. The values given in these tables are the (zero-
order) Pearson correlation coefficients.
Two-tailed t tests with unequal variance were used to

determine significant differences between the breeds or
lactation thirds, assuming a significance level of P < 0.05.

■ RESULTS AND DISCUSSION

Changes in Plasma Metabolites Throughout Lactation

A total of 27 metabolites, including 19 amino acids, glucose,
and seven carboxylic acids, were quantified in jugular blood
specimens collected from 80 dairy cows. The LLOQs and mean
concentrations for the different breeds and lactation thirds for
each metabolite are listed in Table 1. The table also lists the
corresponding, previously determined levels of the 27
metabolites in milk, while Supplemental Table S1 gives the
concentrations of seven additional metabolites measured by
NMR in milk only.21

The majority of metabolites could be detected above their
respective LLOQs in all blood specimens. Exceptions were
asparagine, aspartate, fumarate, glutamine, histidine, methio-
nine, pyruvate, and threonine (Table 1). A comparison of
analyte concentrations between plasma and milk reveals that
glucose, pyruvate, lactate, AABA, BHBA, and most amino acids,
except for glutamate and aspartate, were on average 9.9-fold
(median 6.98) higher in plasma than in milk, while the milk
levels of glutamate, aspartate, and the Krebs cycle intermediates
succinate, fumarate, malate, and citrate were on average 9.1-fold
(median 4.78) higher than their respective plasma levels. The
differences in concentration between blood and milk were
particularly pronounced for the branched-chain amino acids
isoleucine, leucine, and valine, as well as the aromatic amino
acids phenylalanine, tyrosine, and tryptophan, the plasma
concentrations of which were on average 18.7-fold (median 14.68)
higher than their respective concentrations in milk. The marked
differences in plasma and milk concentrations of these amino
acids reflect their extensive utilization by the mammary gland
upon extraction from the blood for milk protein synthesis and
generation of gluconeogenic and ketogenic precursors.28 The
concentration of citrate, on the other hand, was about 24-fold
higher in milk than in plasma and varied little over the course of
lactation in both breeds. As mammary epithelium is
impermeable to citrate in both directions, milk citrate levels
reflect mammary rather than general metabolism.29 Milk citrate
is believed to be one of the main buffer systems of milk, to
regulate the equilibrium between Ca2+ and H+ ions, to maintain
fluidity of milk through its effects on the structure of casein
micelles, and to provide reducing equivalents in the form of
NADPH for de novo synthesis of fatty acids via the NADP-
linked isocitrate dehydrogenase, the activity of which has been
reported to increase 5-fold upon initiation of lactation.7,30 In
contrast, little is known about the functional significance of
malate, whose concentrations in milk as compared to plasma
were on average about 18- and 10-fold higher in Brown Swiss
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and Simmental cows, respectively. One may speculate that the
relatively high concentration of malate in milk reflects an
increased activity of the citrate-malate shuttle in the mammary
gland, which transports acetyl-CoA from the mitochondrial
matrix into the cytosol, thereby providing acetate units for fatty
acid synthesis. Further contributing to the production and
subsequent secretion of malate into milk may be the reported
absence of NAPD-linked malic enzyme activity, which catalyzes
the decarboxylation of malate to pyruvate, in the mammary
gland in early lactation.30

Of the plasma metabolites, glycine showed the most striking
changes in concentration over the course of lactation.
Compared to late lactation, its levels were significantly
increased in both Brown Swiss (P = 1.2 × 10−7) and Simmental
cows (P = 0.0023) during early lactation (Table 1, Figure 1).
Subsequently, plasma glycine levels dropped about 40% and
30%, respectively, in the two breeds. In early lactation, Brown
Swiss cows showed about 45% higher plasma glycine levels than
Simmental cows. Elevated levels of glycine during early
lactation were also observed in milk, with even more
pronounced decreases of about 60% as lactation progressed.
In contrast to plasma, however, absolute concentrations of

glycine in milk were about the same for both breeds. Early
postpartum peaks in plasma concentrations of glycine as well as
serine had been reported previously.31−33 Increases in plasma
levels of glycine were also observed to be greater in high-
compared with low-yielding cows and were accompanied by
decreases in branched-chain amino acids, which was also the
case here.31 Further, energy and protein content of the rations
fed exerted significant effects on the rise in plasma glycine
levels.31,32 It has been suggested that increased levels of plasma
glycine in early lactation might be an indicator of muscle
protein mobilization to meet the high nutrient demand in early
lactation.33 Shibano et al. suggested the measurement of the
glycine-to-alanine (Gly/Ala) ratio in serum as a potential
marker for evaluating the nutritional status of peri-parturient
dairy cows.34 The ratios are shown in Figure 2. High ratios were
observed for the high-yielding Brown Swiss cows during early
lactation, while lower values were observed for the Simmental
cows. An alternative explanation that would account for both
the observed increases in glycine and serine as well as the
observed decreases in alanine, isoleucine, leucine, and valine in
early lactation might be a deficiency of pyridoxal 5′-phosphate,
the metabolically active form of vitamin B6.

35 Pyridoxal

Figure 2. Plasma glycine-to-alanine ratios as a measure for the nutritional status throughout lactation for two breeds. The highly productive Brown
Swiss cows show elevated levels in early lactation.

Figure 1. Plasma glycine concentrations versus days in milk for two breeds. The highly productive Brown Swiss cows show elevated levels in early
lactation.
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5′-phosphate is a critical coenzyme in a variety of enzymatic
reactions that include among others the transamination of
glucogenic amino acids, glycine decarboxylation through the
glycine cleavage system, and glycine-serine transformation by
serine hydroxymethyltransferase.36 Dietary supply and ruminal
synthesis of vitamin B6 are believed to be sufficient in most
situations to prevent clinical deficiencies. However, one cannot

exclude entirely the possibility that cows coping poorly with
the metabolic challenges of early lactation lack sufficient
amounts of vitamin B6 to sustain the multitude of pyridoxal
5′-phosphate-dependent adaptations of glucose, amino acid,
and fatty acid metabolism during the periparturient period.37

Plasma concentrations of alanine in Brown Swiss cows were
significantly decreased in early lactation as compared to the last

Figure 3. Plasma β-hydroxybutyrate concentrations versus days in milk for two breeds. Some of the highly productive Brown Swiss cows show
elevated levels above the cutoff point of 1.4 mmol/L for the detection of subclinical ketosis in early lactation.

Table 2. Partial Pearson Correlations of Plasma Metabolite Levels and Metadata for Early Lactationa

aSignificant correlations with a false discovery rate of 10% are marked in red and green for negative and positive correlations, respectively. The
number of value pairs used for calculation is given in parentheses. For better visibility rows and columns without significant correlations were
omitted.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr4006537 | J. Proteome Res. 2013, 12, 5223−52325228



third of lactation (P = 0.002), but no significant differences
were observed for Simmental cows. Declines in concentrations
of amino acids in blood have been generally attributed to their
increased extraction by the mammary gland with the onset of
lactation to meet amino acid requirements not only for milk
protein synthesis but also the marked increases in protein mass
of the mammary gland and splanchnic tissues.38 Further,
compared to metabolic activities before parturition, there is an
immediate postpartum increase in the capacity of the liver to
convert alanine to glucose to meet the sharply increased
demand of glucose, which exceeds its supply from digestible
energy intake in the form of proprionate.39−41 As the lower
levels of alanine are accompanied by lower levels of glucose,
one may speculate that a shortage of alanine as well as
glutamine, which contribute the most to gluconeogenesis in
lactating cows, limits gluconeogenesis and, thus, may contribute
to the increased formation of ketone bodies from nonesterified
fatty acids and the ketogenic amino acids leucine and lysine,
whose plasma levels were also markedly reduced.40 However,
there is plenty of evidence that the decline in alanine is rather a
consequence of the reduced availability of carbon from glucose-
derived pyruvate rather than amino acids as the source of the

pyruvate carbon of alanine.42 The reduced levels of pyruvate
and lactate in plasma specimens from high-yielding Brown
Swiss cows collected in the first third of lactation further
support the notion of insufficient generation of pyruvate carbon
from glucose for the replenishment of alanine reserves in
skeletal muscle.
The most abundant metabolite in plasma aside from glucose

was BHBA, which was detected over a concentration range of
0.191−2.419 mmol/L. It is apparent that blood BHBA levels
were generally higher than milk BHBA levels, which did not
exceed a maximum level of 0.531 mmol/L. BHBA values above
1 mmol/L were detected in 11 plasma specimens, and the
threshold concentration for subclinical ketosis of 1.4 mmol/L11

was exceeded in five plasma specimens collected from Brown
Swiss cows during the first third of lactation (Figure 3). In
Brown Swiss cows, BHBA levels decreased over the course of
lactation. However, large differences in BHBA levels were
apparent for individual cows during early lactation, indicating
that different animals of the same breed coped differently with
the metabolic stress of early lactation. Brown Swiss cows
showed significantly increased BHBA concentrations in the first
compared to the last third of lactation (P = 0.0077), while this
was not the case for the less productive Simmental cows, where
BHBA concentrations were generally lower. There was no
significant difference in plasma BHBA between Simmental and
Brown Swiss cows during late lactation.
Other plasma metabolites, the concentrations of which were

increased during early lactation, were AABA and succinate.
Elevated plasma levels of AABA during the first month of
lactation have been reported previously.43 Elevated AABA levels are
also observed in milk, as already reported previously.21 Increased
plasma levels of succinate, on the other hand, reflect most likely
higher rates of glutaminolysis in early lactatation, resulting mainly in
the generation of ammonia, alanine, aspartate, glutamate, and CO2

based on tracer studies with [U−14C]glutamine.44 Alanine, in turn,
is utilized as a glucogenic precursor for hepatic glucose production.
The relative contribution of alanine, as well as that of lactate and
glyercol, to hepatic gluconeogenesis has been reported to be
increased in the early postportal period, whereas that of proprionate,
which is derived from ruminal microbial fermentation of ingested

Table 3. Partial Pearson Correlations between Plasma and Milk Metabolites in Early Lactationa

aSignificant correlations with a false discovery rate of 10% are marked in red and green for negative and positive correlations, respectively.
Metabolites measured by NMR are marked by an asterisk. The number of value pairs used for calculation is given in parentheses. For better visibility
rows and columns without significant correlations were omitted.

Figure 4. Network of significantly correlated plasma metabolites.
Positive correlations are shown as solid lines, and negative correlations
as dotted lines. Note that this network is simply a visualization of
Table 2 and does not represent a metabolic pathway network
reconstruction, nor does it imply causal connections.
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fiber carbohydrates and serves as the major substrate of
gluconeogenesis in dairy cows, is slightly decreased.45

Correlation Analysis

Partial correlations were calculated as described in the Statistics
section for all plasma metabolites and metadata of both breeds for
early lactation and are shown in Table 2. Significant positive and
negative correlations (FDR = 10%) are marked in green and red,
respectively. For better visibility, Table 2 was reduced by excluding
rows and columns that did not contain any significant correlations.
For the full table see Supplemental Table S2. Figure 4 shows a
visualization of the observed correlations as a correlation network.
Plasma levels of glycine correlated significantly with those of
succinate. The plasma Gly/Ala ratio is significantly correlated to
plasma BHBA levels. In contrast, BHBA does not correlate
significantly to glycine or alanine alone, underscoring the higher
content of information about nutritional status given by the Gly/Ala
ratio as compared to the raw concentration values.
Further, plasma BHBA showed a significant negative correlation

to plasma glucose in concordance with the expectation of increased
ketogenesis when glucose demand exceeds glucose supply.
No significant correlation between plasma AABA and plasma

glycine was found, in contrast to the correlation of milk AABA
to milk glycine observed in our previous study.21 Significant
correlations were observed between the branched-chain AA
(BCAA) isoleucine, leucine, and valine in plasma. Mammary
cells catabolize BCAA to generate organic acids including
α-ketoglutarate and oxaloacetate, which are transaminated to
glutamate and aspartate.46 Consistently, most organic acids
including glutamic acid and aspartic acid show elevated levels in
milk as compared to blood plasma. It is known that these amino
acids are of great importance for neonatal health, growth and
development.47

Correlations between Plasma and Milk Metabolites

An important objective of this study was the correlation of
plasma metabolites with previously measured milk metabo-
lites.21 FDR-corrected partial correlation coefficients were
calculated for specimens from the first lactation third of both
breeds, including plasma metabolite levels, plasma Gly/Ala
ratio, metadata (milk fat, milk protein, milk fat-to-protein ratio
and milk somatic cell count), 33 milk metabolites, and the milk
glycerophosphocholine-to-phosphocholine ratio that has been
identified previously as a prognostic marker of ketosis risk.13

Significant results are shown in Table 3. For better visibility,
rows and columns without significant correlations were
excluded from Table 3; for the full table see Supplemental
Table S3. As an example for a significantly correlated pair of
features, plasma glycine-to-alanine ratio is plotted against milk
acetone in Figure 5. Plots of the other significant correlations
are shown in Supplemental Figure S2.
Plasma BHBA correlated significantly with milk acetone. For

each animal whose plasma BHBA concentration in the first 40
days of lactation exceeded 1.4 mmol/L, the respective milk
acetone value rose above the threshold of 160 μmol/L for
subclinical ketosis.11 Additionally, a significant correlation of
plasma BHBA with milk BHBA was observed. Elevated
concentrations of BHBA in blood plasma are thus an indicator
for an increase of milk acetone and BHBA, which are well-
known markers for the energy status in dairy cows.10,11

Plasma glyine-to-alanine ratio correlated significantly with
milk acetone levels. The correlation between Gly/Ala and milk
acetone is a novel finding to the best of our knowledge,
underscoring its importance as a marker for the nutrition status
and making it a possible marker for the health status of the
individual cow.

■ CONCLUSIONS

The metabolic status of dairy cows is reflected in both milk and
blood plasma metabolites. The significant direct relationship
between the concentration of blood BHBA, which is considered
the “gold standard” in distinguishing healthy cows from animals
with subclinical ketosis, and milk levels of acetone and BHBA
underscores the usefulness of milk BHBA in the discrimination
of ketotic cows. Further, the strong positive correlation of the
plasma glycine-to-alanine ratio with milk acetone and, to a
lesser extent, milk BHBA, may not only reflect excessive protein
mobilization and glucose supply falling short of glucose
demand in animals prone to ketosis but also indicate a
deficiency of vitamin B6 in these animals, which merits further
investigation. Together with our recent finding that animals
that utilize lecithin rather than adipose tissue as their preferred
source of fatty acids are less prone to ketosis, the present
observations may prove useful in preventing the development
of ketosis and in selecting cows that adapt well to metabolic
challenges of lactation for breeding purposes.

Figure 5. Plasma glycine-to-alanine ratio versus milk acetone levels in early lactation.
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