99 research outputs found

    Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    Get PDF
    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established

    Acquired resistance to DZNep-mediated apoptosis is associated with copy number gains of AHCY in a B-cell lymphoma model

    Get PDF
    BackgroundEnhancer of zeste homolog 2 (EZH2) is considered an important driver of tumor development and progression by its histone modifying capabilities. Inhibition of EZH2 activity is thought to be a potent treatment option for eligible cancer patients with an aberrant EZH2 expression profile, thus the indirect EZH2 inhibitor 3-Deazaneplanocin A (DZNep) is currently under evaluation for its clinical utility. Although DZNep blocks proliferation and induces apoptosis in different tumor types including lymphomas, acquired resistance to DZNep may limit its clinical application.MethodsTo investigate possible mechanisms of acquired DZNep resistance in B-cell lymphomas, we generated a DZNep-resistant clone from a previously DZNep-sensitive B-cell lymphoma cell line by long-term treatment with increasing concentrations of DZNep (ranging from 200 to 2000nM) and compared the molecular profiles of resistant and wild-type clones. This comparison was done using molecular techniques such as flow cytometry, copy number variation assay (OncoScan and TaqMan assays), fluorescence in situ hybridization, Western blot, immunohistochemistry and metabolomics analysis.ResultsWhole exome sequencing did not indicate the acquisition of biologically meaningful single nucleotide variants. Analysis of copy number alterations, however, demonstrated among other acquired imbalances an amplification (about 30 times) of the S-adenosyl-L-homocysteine hydrolase (AHCY) gene in the resistant clone. AHCY is a direct target of DZNep and is critically involved in the biological methylation process, where it catalyzes the reversible hydrolysis of S-adenosyl-L-homocysteine to L-homocysteine and adenosine. The amplification of the AHCY gene is paralleled by strong overexpression of AHCY at both the transcriptional and protein level, and persists upon culturing the resistant clone in a DZNep-free medium.ConclusionsThis study reveals one possible molecular mechanism how B-cell lymphomas can acquire resistance to DZNep, and proposes AHCY as a potential biomarker for investigation during the administration of EZH2-targeted therapy with DZNep

    Low Temperature-Dependent Salmonid Alphavirus Glycoprotein Processing and Recombinant Virus-Like Particle Formation

    Get PDF
    Pancreas disease (PD) and sleeping disease (SD) are important viral scourges in aquaculture of Atlantic salmon and rainbow trout. The etiological agent of PD and SD is salmonid alphavirus (SAV), an unusual member of the Togaviridae (genus Alphavirus). SAV replicates at lower temperatures in fish. Outbreaks of SAV are associated with large economic losses of ∼17 to 50 million $/year. Current control strategies rely on vaccination with inactivated virus formulations that are cumbersome to obtain and have intrinsic safety risks. In this research we were able to obtain non-infectious virus-like particles (VLPs) of SAV via expression of recombinant baculoviruses encoding SAV capsid protein and two major immunodominant viral glycoproteins, E1 and E2 in Spodoptera frugiperda Sf9 insect cells. However, this was only achieved when a temperature shift from 27°C to lower temperatures was applied. At 27°C, precursor E2 (PE2) was misfolded and not processed by host furin into mature E2. Hence, E2 was detected neither on the surface of infected cells nor as VLPs in the culture fluid. However, when temperatures during protein expression were lowered, PE2 was processed into mature E2 in a temperature-dependent manner and VLPs were abundantly produced. So, temperature shift-down during synthesis is a prerequisite for correct SAV glycoprotein processing and recombinant VLP production

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16, 1996 Binyanei haOoma, Jerusalem Iarael part 3(final part)

    Get PDF

    Correction

    Get PDF

    Histone acetylation and DNA demethylation of B cells result in a Hodgkin-like phenotype

    No full text
    A unique feature of the tumor cells (Hodgkin/Reed-Sternberg (HRS)) of classical Hodgkin lymphoma (cHL) is the loss of their B-cell phenotype despite their B-cell origin. Several lines of evidence suggest that epigenomic events, especially promoter DNA methylation, are involved in this silencing of many B-cell-associated genes. Here, we show that DNA demethylation alone or in conjunction with histone acetylation is not able to reconstitute the B-cell-gene expression program in cultured HRS cells. Instead, combined DNA demethylation and histone acetylation of B-cell lines induce an almost complete extinction of their B-cell-expression program and a tremendous upregulation of numerous Hodgkin-characteristic genes, including key players such as Id2 known to be involved in the suppression of the B-cell phenotype. Since the upregulation of Hodgkin-characteristic genes and the extinction of the B-cell-expression program occurred simultaneously, epigenetic changes may also be responsible for the malignant transformation of cHL. The epigenetic upregulation of Hodgkin-characteristic genes thus plays—in addition to promoter DNA hypermethylation of B-cell-associated genes—a pivotal role for the reprogramming of HRS cells and explains why DNA demethylation alone is unable to reconstitute the B-cell-expression program in HRS cells
    corecore