165 research outputs found

    Investigation of the urinary sodium-to-potassium ratio target level based on the recommended dietary intake goals for the Japanese population: The INTERMAP Japan

    Get PDF
    Growing epidemiological evidence has shown an association of the urinary sodium (Na) to potassium (K) ratio (Na/K ratio) with blood pressure and cardiovascular diseases. However, no clear cutoff level has been defined. We investigated the cutoff level of the urinary Na/K ratio under different dietary guidelines for Japanese individuals, especially that endorsed by the 2020 revised Japanese Dietary Reference Intakes (DRIs). A population of 1145 Japanese men and women aged 40 to 59 years from the INTERMAP study was examined. Using high-quality standardized data, the averages of two 24 h urinary collections and four 24 h dietary recalls were used to calculate the 24 h urinary and dietary Na/K ratios, respectively. Associations between the urinary and dietary Na/K ratios were tested by sex- and age-adjusted partial correlation. The optimal urinary Na/K ratio cutoff level was determined by receiver operating characteristic (ROC) curves and sex-specific cross tables for recommended dietary K and salt. Overall, the average molar ratio of 24 h urinary Na/K was 4.3. We found moderate correlations (P < 0.001) of the 24 h urinary Na/K ratio with 24 h urinary Na and K excretion (r = 0.52, r = −0.49, respectively) and the dietary Na/K ratio (r = 0.53). ROC curves showed that a 24 h urinary Na/K ratio of approximately 2 predicted Na and K intake that meets the dietary goals of the Japanese DRIs. The range of urinary Na/K ratios meeting the dietary goals of the Japanese DRIs for both Na and K was 1.6‒2.2 for men and 1.7‒1.9 for women. Accomplishing a urinary Na/K ratio of 2 would be desirable to achieve the DRIs dietary goals for both Na and K simultaneously in middle-aged Japanese men and women accustomed to Japanese dietary habits. This observational study is registered at www.clinicaltrials.gov as NCT00005271

    Prognostic impact of PCR-based identification of isolated tumour cells in the peritoneal lavage fluid of gastric cancer patients who underwent a curative R0 resection

    Get PDF
    Identification of cancer cells in the peritoneal cavity could influence therapy and outcome of gastric carcinoma patients. The objective of this study was to evaluate the clinical impact of the real-time quantitative polymerase chain reaction-(PCR) based identification of isolated tumour cells in the peritoneal lavage fluid of gastric carcinoma. The peritoneal lavage fluid of 116 patients with gastric cancer was sampled at laparotomy. After RNA extraction and reverse transcription, real-time quantitative PCR was performed using the primers and probes for carcinoembryonic antigen (CEA) and cytokeratin-20 (CK20). When either the CEA mRNA or CK20 mRNA level of the sample was over the cutoff value, the sample was determined to be PCR-positive. Forty-six (40%) of the 116 patients were PCR-positive and 30 (65%) of the 46 PCR-positive patients died as a result of recurrent peritoneal dissemination. The prognosis of the 46 PCR-positive patients was significantly (P<0.001) worse than that of 70 PCR-negative patients. Furthermore, in 80 of the cases with a curative R0 resection, 15 of the patients with PCR-positive findings had a significantly (P<0.001) poorer prognosis than the 65 PCR-negative patients. The prognosis of the PCR-positive patients was significantly poorer than that of the PCR-negative patients in the T3 (P<0.0001) and T4 (P=0.048) subgroups. In a multivariate analysis of the 80 cases with a curative R0 resection, the real-time quantitative RT–PCR (CEA and/or CK20) levels indicated that they were independent prognostic factors. The real-time quantitative RT–PCR analysis of the CEA and/or CK20 transcripts in the peritoneal lavage fluid is useful for predicting the peritoneal recurrence in patients who are undergoing a curative resection for gastric cancer

    PTEN as a Prognostic and Predictive Marker in Postoperative Radiotherapy for Squamous Cell Cancer of the Head and Neck

    Get PDF
    BACKGROUND: Tumor suppressor PTEN is known to control a variety of processes related to cell survival, proliferation, and growth. PTEN expression is considered as a prognostic factor in some human neoplasms like breast, prostate, and thyroid cancer. METHODOLOGY/PRINCIPAL FINDINGS: In this study we analyzed the influence of PTEN expression on the outcome of a randomized clinical trial of conventional versus 7-days-a-week postoperative radiotherapy for squamous cell cancer of the head and neck. The patients with cancer of the oral cavity, oropharynx, and larynx were randomized to receive 63 Gy in fractions of 1.8 Gy given 5 days a week (CF) or 7 days a week (p-CAIR). Out of 279 patients enrolled in the study, 147 paraffin blocks were available for an immunohistochemical assessment of PTEN. To evaluate the prognostic value of PTEN expression and the effect of fractionation relative to PTEN, the data on the outcome of a randomized clinical trial were analyzed. Tumors with a high intensity of PTEN staining had significant gain in the loco-regional control (LRC) from p-CAIR (5-year LRC 92.7% vs. 70.8%, for p-CAIR vs. CF, p = 0.016, RR = 0.26). By contrast, tumors with low intensity of PTEN did not gain from p-CAIR (5-year LRC 56.2% vs. 47.2%, p = 0.49, RR = 0.94). The intensity of PTEN highly affected the LRC in a whole group of 147 patients (5-year LRC 80.9% vs. 52.3% for high vs. low PTEN, p = 0.0007, RR = 0.32). In multivariate Cox analysis, including neck node involvement, EGFR, nm23, Ki-67, p53, cyclin D1, tumor site and margins, PTEN remained an independent predictor of LRC (RR = 2.8 p = 0.004). CONCLUSIONS/SIGNIFICANCE: These results suggest that PTEN may serve as a potent prognostic and predictive marker in postoperative radiotherapy for high-risk squamous cell cancer of the head and neck

    EndoG Links Bnip3-Induced Mitochondrial Damage and Caspase-Independent DNA Fragmentation in Ischemic Cardiomyocytes

    Get PDF
    Mitochondrial dysfunction, caspase activation and caspase-dependent DNA fragmentation are involved in cell damage in many tissues. However, differentiated cardiomyocytes repress the expression of the canonical apoptotic pathway and their death during ischemia is caspase-independent. The atypical BH3-only protein Bnip3 is involved in the process leading to caspase-independent DNA fragmentation in cardiomyocytes. However, the pathway by which DNA degradation ensues following Bnip3 activation is not resolved. To identify the mechanism involved, we analyzed the interdependence of Bnip3, Nix and EndoG in mitochondrial damage and DNA fragmentation during experimental ischemia in neonatal rat ventricular cardiomyocytes. Our results show that the expression of EndoG and Bnip3 increases in the heart throughout development, while the caspase-dependent machinery is silenced. TUNEL-positive DNA damage, which depends on caspase activity in other cells, is caspase-independent in ischemic cardiomyocytes and ischemia-induced DNA high and low molecular weight fragmentation is blocked by repressing EndoG expression. Ischemia-induced EndoG translocation and DNA degradation are prevented by silencing the expression of Bnip3, but not Nix, or by overexpressing Bcl-xL. These data establish a link between Bnip3 and EndoG-dependent, TUNEL-positive, DNA fragmentation in ischemic cardiomyocytes in the absence of caspases, defining an alternative cell death pathway in postmitotic cells

    Selective Activation of p120ctn-Kaiso Signaling to Unlock Contact Inhibition of ARPE-19 Cells without Epithelial-Mesenchymal Transition

    Get PDF
    Contact-inhibition ubiquitously exists in non-transformed cells and explains the poor regenerative capacity of in vivo human retinal pigment epithelial cells (RPE) during aging, injury and diseases. RPE injury or degeneration may unlock mitotic block mediated by contact inhibition but may also promote epithelial-mesenchymal transition (EMT) contributing to retinal blindness. Herein, we confirmed that EMT ensued in post-confluent ARPE-19 cells when contact inhibition was disrupted with EGTA followed by addition of EGF and FGF-2 because of activation of canonical Wnt and Smad/ZEB signaling. In contrast, knockdown of p120-catenin (p120) unlocked such mitotic block by activating p120/Kaiso, but not activating canonical Wnt and Smad/ZEB signaling, thus avoiding EMT. Nuclear BrdU labeling was correlated with nuclear release of Kaiso through p120 nuclear translocation, which was associated with activation of RhoA-ROCK signaling, destabilization of microtubules. Prolonged p120 siRNA knockdown followed by withdrawal further expanded RPE into more compact monolayers with a normal phenotype and a higher density. This new strategy based on selective activation of p120/Kaiso but not Wnt/β-catenin signaling obviates the need of using single cells and the risk of EMT, and may be deployed to engineer surgical grafts containing RPE and other tissues

    Evaluating the Sensitivity of Mycobacterium tuberculosis to Biotin Deprivation Using Regulated Gene Expression

    Get PDF
    In the search for new drug targets, we evaluated the biotin synthetic pathway of Mycobacterium tuberculosis (Mtb) and constructed an Mtb mutant lacking the biotin biosynthetic enzyme 7,8-diaminopelargonic acid synthase, BioA. In biotin-free synthetic media, ΔbioA did not produce wild-type levels of biotinylated proteins, and therefore did not grow and lost viability. ΔbioA was also unable to establish infection in mice. Conditionally-regulated knockdown strains of Mtb similarly exhibited impaired bacterial growth and viability in vitro and in mice, irrespective of the timing of transcriptional silencing. Biochemical studies further showed that BioA activity has to be reduced by approximately 99% to prevent growth. These studies thus establish that de novo biotin synthesis is essential for Mtb to establish and maintain a chronic infection in a murine model of TB. Moreover, these studies provide an experimental strategy to systematically rank the in vivo value of potential drug targets in Mtb and other pathogens

    Unilateral congenital elongation of the cervical part of the internal carotid artery with kinking and looping: two case reports and review of the literature

    Get PDF
    Unilateral and bilateral variation in the course and elongation of the cervical (extracranial) part of the internal carotid artery (ICA) leading to its tortuosity, kinking and coiling or looping is not a rare condition, which could be caused by both embryological and acquired factors. Patients with such variations may be asymptomatic in some cases; in others, they can develop cerebrovascular symptoms due to carotid stenosis affecting cerebral circulation. The risk of transient ischemic attacks in patients with carotid stenosis is high and its surgical correction is indicated for the prevention of ischemic stroke. Detection of developmental variations of the ICA and evaluation of its stenotic areas is very important for surgical interventions and involves specific diagnostic imaging techniques for vascular lesions including contrast arteriography, duplex ultrasonography and magnetic resonance angiography. Examination of obtained images in cases of unusual and complicated variations of vascular pattern of the ICA may lead to confusion in interpretation of data. Awareness about details and topographic anatomy of variations of the ICA may serve as a useful guide for both radiologists and vascular surgeons. It may help to prevent diagnostic errors, influence surgical tactics and interventional procedures and avoid complications during the head and neck surgery. Our present study was conducted with a purpose of updating data about developmental variations of the ICA. Dissections of the main neurovascular bundle of the head and neck were performed on a total 14 human adult cadavers (10 – Africans: 7 males & 3 females and 4 – East Indians: all males). Two cases of unilateral congenital elongation of the cervical part of the ICA with kinking and looping and carotid stenoses were found only in African males. Here we present their detailed case reports with review of the literature

    Role of DNA methylation in head and neck cancer

    Get PDF
    Head and neck cancer (HNC) is a heterogenous and complex entity including diverse anatomical sites and a variety of tumor types displaying unique characteristics and different etilogies. Both environmental and genetic factors play a role in the development of the disease, but the underlying mechanism is still far from clear. Previous studies suggest that alterations in the genes acting in cellular signal pathways may contribute to head and neck carcinogenesis. In cancer, DNA methylation patterns display specific aberrations even in the early and precancerous stages and may confer susceptibility to further genetic or epigenetic changes. Silencing of the genes by hypermethylation or induction of oncogenes by promoter hypomethylation are frequent mechanisms in different types of cancer and achieve increasing diagnostic and therapeutic importance since the changes are reversible. Therefore, methylation analysis may provide promising clinical applications, including the development of new biomarkers and prediction of the therapeutic response or prognosis. In this review, we aimed to analyze the available information indicating a role for the epigenetic changes in HNC
    corecore