28 research outputs found

    Phosphorus Sorption and Lime Requirements of Maize Growing Acid Soils of Kenya

    Get PDF
    In Kenya, maize (Zea mays L.) is mainly grown on acid soils in high rainfall areas. These soils are known for low available phosphorus (P), partly due to its sorption by aluminium (Al) and iron oxides. The study determined soil P sorption, lime requirements and the effects of lime on soil pH, Al levels and available P on the main maize growing acids soils in the highlands east and west of Rift Valley (RV), Kenya. Burnt lime containing 21% calcium oxide was used. The soils were strongly to extremely acid (pH 4.85-4.07), had high exchangeable Al3+ (> 2 cmol Al kg-1) and Al saturation (> 20% Al), which most maize germplasm grown in Kenya are sensitive to. The base cations, cation exchange capacity and available P (< 10 mg P kg-1 bicarbonate extractable P) were low, except at one site in the highlands east of RV indicative with history of high fertilizer applications. Highlands east of RV soils had higher P sorption (343-402 mg P kg-1) than the west (107-258 mg P kg-1), probably because of their high Al3+ ions and also the energies of bonding between the soil colloids and phosphate ions. Highlands east of RV also had higher lime requirements (11.4-21.9 tons lime ha-1) than the west (5.3-9.8 tons lime ha-1). Due to differences in soil acidity, Al levels and P sorption capacities within and between highlands east and west of RV, blanket P fertilizer and lime recommendations may not serve all soils equally well. Keywords: acid soils, phosphorus sorption, lime requirement

    Factors affecting haemoglobin dynamics in African children with acute uncomplicated Plasmodium falciparum malaria treated with single low dose primaquine or placebo

    Get PDF
    Background: Single low-dose primaquine (SLDPQ) effectively blocks the transmission of Plasmodium falciparum malaria, but anxiety remains regarding its haemolytic potential in patients with glucose-6-phopshate dehydrogenase (G6PD) deficiency. We, therefore, examined the independent effects of several factors on haemoglobin (Hb) dynamics in falciparum-infected children with a particular interest in SLDPQ and G6PD status. Methods: This randomised, double-blind, placebo-controlled, safety trial was conducted in Congolese and Ugandan children aged 6 months–11 years with acute uncomplicated P. falciparum and day (D) 0 Hbs ≄ 6 g/dL who were treated with age-dosed SLDPQ/placebo and weight-dosed artemether lumefantrine (AL) or dihydroartemisinin piperaquine (DHAPP). Genotyping defined G6PD (G6PD c.202T allele), haemoglobin S (HbS), and α-thalassaemia status. Multivariable linear and logistic regression assessed factor independence for continuous Hb parameters and Hb recovery (D42 Hb > D0 Hb), respectively. Results: One thousand one hundred thirty-seven children, whose median age was 5 years, were randomised to receive: AL + SLDPQ (n = 286), AL + placebo (286), DHAPP + SLDPQ (283), and DHAPP + placebo (282). By G6PD status, 284 were G6PD deficient (239 hemizygous males, 45 homozygous females), 119 were heterozygous females, 418 and 299 were normal males and females, respectively, and 17 were of unknown status. The mean D0 Hb was 10.6 (SD 1.6) g/dL and was lower in younger children with longer illnesses, lower mid-upper arm circumferences, splenomegaly, and α-thalassaemia trait, who were either G6PDd or heterozygous females. The initial fractional fall in Hb was greater in younger children with higher D0 Hbs and D0 parasitaemias and longer illnesses but less in sickle cell trait. Older G6PDd children with lower starting Hbs and greater factional falls were more likely to achieve Hb recovery, whilst lower D42 Hb concentrations were associated with younger G6PD normal children with lower fractional falls, sickle cell disease, α-thalassaemia silent carrier and trait, and late treatment failures. Ten blood transfusions were given in the first week (5 SLDPQ, 5 placebo). Conclusions: In these falciparum-infected African children, posttreatment Hb changes were unaffected by SLDPQ, and G6PDd patients had favourable posttreatment Hb changes and a higher probability of Hb recovery. These reassuring findings support SLDPQ deployment without G6PD screening in Africa

    Effects of lime, phosphorus and rhizobia on Sesbania sesban performance in a Western Kenyan acid soil

    Get PDF
    Aluminium (Al) toxicity, phosphorus (P) deficiency and low rhizobia populations limit Sesbania (Sesbania sesban) performance in tropical acid soils. The study determined the i) indigenous rhizobia populations that nodulate sesbania and ii) effects of lime (0 and 4 t/ha), P-fertilizer (0 and 60 kg/ha) and acid tolerant rhizobia (0 and inoculation) on soil and selected sesbania accessions performance in Western Kenya acid soil. Study site had acid soil, low available P, nitrogen (N) and rhizobia populations that nodulate Sesbania (146 cells/g soil). Lime increased soil pH, while both lime and P-fertilizer increased available P. Aluminium toxicity tolerant and P-efficient accessions (SSBSA004, SSUG3, SSUG4 and SSUG5) had faster growth, higher nodulation, shoot P, and shoot N and response to treatments than the sensitive one (SSBSA203). After 7 months of growth, SSUG3 had highest shoot length (306 cm) and dry matter (5.64 tons/ha), hence, most suitable for building poles and fuel wood. SSUG5 accumulated the highest shoot N (222 kg N/ha) and was therefore, most suitable soil N replenishment. Thus, in acid P deficient and low rhizobial population soils of Western Kenya, the use of lime, P-fertilizer, rhizobia inoculation and Al toxicity tolerant Sesbania are important for Sesbania establishment and growth. Key words: Rhizobia, Sesbania, soil acidity, aluminum toxicity, lime, phosphorus

    Incidence and predictors of hospital readmission in children presenting with severe anaemia in Uganda and Malawi: a secondary analysis of TRACT trial data

    Get PDF
    Background: Severe anaemia (haemoglobin < 6 g/dL) is a leading cause of recurrent hospitalisation in African children. We investigated predictors of readmission in children hospitalised with severe anaemia in the TRACT trial (ISRCTN84086586) in order to identify potential future interventions. Methods: Secondary analyses of the trial examined 3894 children from Uganda and Malawi surviving a hospital episode of severe anaemia. Predictors of all-cause readmission within 180 days of discharge were identified using multivariable regression with death as a competing risk. Groups of children with similar characteristics were identified using hierarchical clustering. Results: Of the 3894 survivors 682 (18%) were readmitted; 403 (10%) had ≄2 re-admissions over 180 days. Three main causes of readmission were identified: severe anaemia (n = 456), malaria (n = 252) and haemoglobinuria/dark urine syndrome (n = 165). Overall, factors increasing risk of readmission included HIV-infection (hazard ratio 2.48 (95% CI 1.63–3.78), p < 0.001); ≄2 hospital admissions in the preceding 12 months (1.44(1.19–1.74), p < 0.001); history of transfusion (1.48(1.13–1.93), p = 0.005); and missing ≄1 trial medication dose (proxy for care quality) (1.43 (1.21–1.69), p < 0.001). Children with uncomplicated severe anaemia (Hb 4-6 g/dL and no severity features), who never received a transfusion (per trial protocol) during the initial admission had a substantially lower risk of readmission (0.67(0.47–0.96), p = 0.04). Malaria (among children with no prior history of transfusion) (0.60(0.47–0.76), p < 0.001); younger-age (1.07 (1.03–1.10) per 1 year younger, p < 0.001) and known sickle cell disease (0.62(0.46–0.82), p = 0.001) also decreased risk of readmission. For anaemia re-admissions, gross splenomegaly and enlarged spleen increased risk by 1.73(1.23–2.44) and 1.46(1.18–1.82) respectively compared to no splenomegaly. Clustering identified four groups of children with readmission rates from 14 to 20%. The cluster with the highest readmission rate was characterised by very low haemoglobin (mean 3.6 g/dL). Sickle Cell Disease (SCD) predominated in two clusters associated with chronic repeated admissions or severe, acute presentations in largely undiagnosed SCD. The final cluster had high rates of malaria (78%), severity signs and very low platelet count, consistent with acute severe malaria. Conclusions: Younger age, HIV infection and history of previous hospital admissions predicted increased risk of readmission. However, no obvious clinical factors for intervention were identified. As missing medication doses was highly predictive, attention to care related factors may be important. Trial registration: ISRCTN ISRCTN84086586. Keywords: Severe anaemia, Readmissio

    The impact of Desmodium spp. and cutting regimes on the agronomic and economic performance of Desmodium- maize intercropping system in western Kenya

    No full text
    Low soil fertility, stemborers (particularly, Chilo partellus) and Striga weeds (Striga hermonthica and Striga asiatica) are major limitations to production of maize in western Kenya. The “Push–Pull” technology (“PPT”) has been described as an appropriate innovative technology capable of addressing these constraints. The technology involves intercropping maize with Desmodium and planting Napier grass (Pennisetum purpureum) around the intercrop, but in the current study a modified PPT was used and Napier grass was not included. Field trials were conducted in two locations in western Kenya during 4 subsequent seasons to test the hypothesis that maize yield, the degree of Striga suppression and economic benefits of intercropping maize with Desmodium are affected by: (i) the related biomass production by different Desmodium species and (ii) the cutting regime of the Desmodium. Maize was intercropped with Desmodium uncinatum (Jacq.) DC, cv Silverleaf or Desmodium intortum (Mill.) Urb. cv Greenleaf, and treatments with sole maize (with and without urea) were included for comparison. To eliminate phosphorus (P) deficiency, all treatments received basal P. The first two Desmodium cutting events were fixed at land preparation i.e. at the start of every season, and 4 weeks later, following the recommended practice, while the third cutting was varied and conducted at 9, 12 or 18 weeks after planting maize. Maize yield in the Desmodium–maize intercropping system was only higher than sole maize without urea from the third season. This implies that when P is not limiting inclusion of Desmodium spp. into the maize cropping system would provide a substitute for inorganic N fertilizers to enhance crop growth and yield after Desmodium becomes well established. Cumulative maize grain yield over the four seasons with the D. intortum and D. uncinatum intercrops were 6.3 and 7.0, and 10.9 and 11.6 t ha−1 in Busia and Siaya, respectively, and significantly higher than or comparable to a maize monocrop (5.8 and 11.8 t ha−1). Average net benefits from Desmodium intercropping over the four seasons were increased by 1290 and 918$ ha−1 relative to the maize monocrop in Busia and Siaya, respectively. Biomass yields were significantly higher for D. intortum than for D. uncinatum. Varying the time of the third Desmodium cutting had little effect on Desmodium biomass yields or maize grain yields in Busia, while in Siaya, D. intortum biomass yields were highest when cut at 12 weeks after planting. In the Desmodium intercropping systems, Striga counts were reduced by 95% in Busia and by 65–90% in Siaya with higher reductions when Desmodium was cut at 18 weeks after planting. In summary, the use of PPT provides robust and high economic benefits to smallholder farmers in western Kenya. The use of D. uncinatum with the third cutting at 18 weeks after planting is recommended, but can be modified according to the need for fodder without much effect on maize yield or revenue
    corecore