20 research outputs found

    Podofilox-Induced Regression of Shope Papillomas May Be Independent of Host Immunity

    Get PDF
    We tested the hypothesis that infiltrating leukocytes might contribute to papilloma destruction following podofilox treatment. New Zealand White (NZW) rabbits were inoculated with cottontail rabbit papillomavirus (CRPV) onto abraded areas of the dorsal skin. At 21 d after viral inoculation, 5.0% podofilox solution was applied to some papillomas, whereas others were used as controls. Three rabbits were sacrificed at each of three different periods after treatment initiation (1, 4, and 7 d). Four monoclonal antibodies (MoAbs), RG-16 (for B cells), L11/135 (specific for T cells), 2C4 (specific for class II antigen), and Ki67 (specific for proliferating cells), were used in an immunohistochemical study. All positive cells and total cells in the field were counted with an ocular grid. After 1 d of treatment, proliferation of papilloma cells was strongly suppressed in treated papillomas, but leukocytic infiltration was not altered. At 4 d and 7 d of treatment, there were substantial increases (about two to three times) in the numbers of B and T cells and class II – expressing leukocytes. The upper layers of the papillomas were highly necrotic and cell proliferation was absent in an layers. These data support the view that podofilox has a direct toxic effect on papilloma tissue. Leukocyte infiltration is not strongly associated with papilloma tissue and may not contribute to papilloma destruction

    Magnetic tunnel junctions with a B2-ordered CoFeCrAl equiatomic Heusler alloy

    Get PDF
    The equiatomic quaternary Heusler alloy CoFeCrAl is a candidate material for spin-gapless semiconductors (SGSs). However, to date, there have been no experimental attempts at fabricating a junction device. This paper reports a fully epitaxial (001)-oriented MgO barrier magnetic tunnel junction (MTJ) with CoFeCrAl electrodes grown on a Cr buffer. X-ray and electron diffraction measurements show that the (001) CoFeCrAl electrode films with atomically flat surfaces have a B2-ordered phase. The saturation magnetization is 380 emu/cm3, almost the same as the value given by the Slater–Pauling–like rule, and the maximum tunnel magnetoresistance ratios at 300 K and 10 K are 87% and 165%, respectively. Cross-sectional electron diffraction analysis shows that the MTJs have MgO interfaces with fewer dislocations. The temperature- and bias-voltage dependence of the transport measurements indicates magnon-induced inelastic electron tunneling overlapping with the coherent electron tunneling. X-ray magnetic circular dichroism (XMCD) measurements show a ferromagnetic arrangement of the Co and Fe magnetic moments of B2-ordered CoFeCrAl, in contrast to the ferrimagnetic arrangement predicted for the Y -ordered state possessing SGS characteristics. Ab-initio calculations taking account of the Cr-Fe swap disorder qualitatively explain the XMCD results. Finally, the effect of the Cr-Fe swap disorder on the ability for electronic states to allow coherent electron tunneling is discussed

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore