34 research outputs found
Fisheries profile mapping of coastal districts in Maharashtra state through GIS
In recent times, GIS is being increasingly used as a decision support system for management of fisheries and aquaculture. It provides new innovative approaches of the dynamic relations that characterize this sector. In this context, a study is conducted based on the secondary data of a major maritime state, Maharashtra, where mapping of fisheries profile of coastal districts in the state is performed through GIS tool having critical geographic dimensions. This paper aims to map information of the state which can be used for the purpose of planning and decision making as each aspect of map has a different component involved. For this purpose, at the core of the system, the data were accessed and integrated from different sources mainly from the five coastal districts of Maharashtra state. Data were brought in tabular form through Microsoft Excel and then joined to Map info Professional version 8.0 GIS software was used with the digitized map of Maharashtra state to enable mapping. This was further synchronized and integrated to generate four thematic maps searchable on several criteria. Map 1 contains the searchable criteria as regards to the fish growth for the year 1997-2004 and fish seed production for the year 2003-04. Map 2 contains fisher population along with their occupation for the year 1992. Map 3 contains brackish water and shrimp farming production and culture area. Map 4 contains infrastructural facilities which include type of boats etc. With this mapping, planners and various stakeholders have accessible information as regards to the various components of fisheries in the state of Maharashtra
Evaluation of the efficacy of Latakaranja as Antispasmodic Drug in Kastaartava - A Randomised Clinical Control Trial
Kastaartava (Dysmenorrohea) is a greek word, describes about painful menstruation which the Pratyatmaka Lakhshans of various Yonivyapad that are Vatala Yonivyapad, Udavartini Yonivyapad, Paripluta Yonivyapad, Mahayoni and Vataja Artava Dusti that affects 75% of adolscents, 25-50% of adult women and 5-20% having dysmenorrhea. It is a common reason for losing time at school or work or visiting family doctor. Morbid Vatadosha especially Apanavata is a causative factor of Kastaartava. Vatahara properties are beneficial considering the morbidity and complications that are caused by Kastaaratava, mentioned above herbal preparation has been tried here. This research work is randomized control clinical study with Pre-test and Post-test design. 40 patients suffering from Kastaaratava (Dysmenorrohoea) were selected randomly for study. The selected patients were divided into 2 groups, 20 patients each. The selected 20 patients in Group A (Trial group) were administered Latakaranja Beeja Churna orally. The selected 20 patients in Group B (Controlled group) were administered Rajapravartini Vati. The duration of treatment was for 03 days of menstruation for 2 menstrual cycles and followup for the next menstrual cycle. After the completion of the clinical trial, it was found that in Rajapravartini Vati, there was highly significant result in Cramping pain in abdomen, Irritability, Tenderness in Breast, Back pain and Headache, where as Latakaranja Beeja Choorna there is also significant result in Cramping pain in Abdomen, Irritability, Tenderness in Breast, Back Pain, Headache and Vomiting but statistically considering average mean Latakaranja Choorna shows comparatively lesser effective than Rajapravartini Vati. By the statistical results it can be concluded that Rajapravartini Vati has better result when compared to Latakaranja Choorna in the present study
Pier Scour Prediction in Non-Uniform Gravel Beds
YesPier scour has been extensively studied in laboratory experiments. However, scour depth relationships based on data at the laboratory scale often yield unacceptable results when extended to field conditions. In this study, non-uniform gravel bed laboratory and field datasets with gravel of median size ranging from 2.7 to 14.25 mm were considered to predict the maximum equilibrium scour depth at cylindrical piers. Specifically, a total of 217 datasets were collected: 132 from literature sources and 85 in this study using new experiments at the laboratory scale, which constitute a novel contribution provided by this paper. From the analysis of data, it was observed that Melville and Coleman’s equation performs well in the case of laboratory datasets, while it tends to overestimate field measurements. Guo’s and Kim et al.’s relationships showed good agreements only for laboratory datasets with finer non-uniform sediments: deviations in predicting the maximum scour depth with non-uniform gravel beds were found to be significantly greater than those for non-uniform sand and fine gravel beds. Consequently, new K-factors for the Melville and Coleman’s equation were proposed in this study for non-uniform gravel-bed streams using a curve-fitting method. The results revealed good agreements between observations and predictions, where this might be an attractive advancement in overcoming scale effects. Moreover, a sensitivity analysis was performed to identify the most sensitive K-factors
Visible Spectrophotometric Estimation of Diacerein in Bulk and Pharmaceutical Dosage Forms
Two simple, sensitive, accurate, rapid, and economical spectrophotometric methods have been developed for the estimation of diacerein in Pharmaceutical dosage forms. Method A is based on the reaction of diacerein with Folin-Ciocalteu reagent, in the presence of 0.5 N sodium hydroxide solution, giving a pink-colored chromogen, which shows maximum absorbance at 512 nm against reagent blank, while method B is based on the oxidation of diacerein with potassium permanganate in an alkaline medium giving a pink-colored chromogen, which shows maximum absorption at 497.5 nm. Beer’s law was obeyed in the concentration range of 4 – 20 µg/ml for both methods A and B. Results of the analysis were validated statistically, and by recovery studies
Mushy-Zone Rayleigh Number to Describe Macrosegregation and Channel Segregate Formation During Directional Solidification of Metallic Alloys
A recently defined mushy-zone Rayleigh number (R-aM) that includes side-branching contributions to the mushy-zone permeability has been examined for its correlation with the longitudinal macrosegregation and channel segregate formation. The Rayleigh number shows (1) a strong correlation between the extent of longitudinal macrosegregation and increase in the mushy-zone convection and (2) a good ability to predict the formation of channel segregates during directional solidification
Primary Dendrite Distribution and Disorder During Directional Solidification of Pb-Sb Alloys
Pb-2.2 wt pct Sb and Pb-5.8 wt pet Sb alloys have been directionally solidified from a single-crystal seed with its [100] orientation parallel to the growth direction, to examine the primary dendrite distribution and disorder of the dendrite arrays. The dendrite distribution and ordering have been investigated using analysis techniques such as the Gauss-amplitude fit to the frequency distribution of nearest and higher-order spacings, minimum spanning tree (MST), Voronoi polygon, and Fourier transform (FT) of the dendrite centers. Since the arrangement of dendrites is driven by the requirement to accommodate side-branch growth along the (100) directions, the FT images of the fully developed dendrite centers contain spots which indicate this preferred alignment. A directional solidification distance of about three mushy-zone lengths is sufficient to ensure a steady-state dendritic array, in terms of reaching a constant mean primary spacing. However, local dendrite ordering continues throughout the directional solidification process. The interdendritic convection not only decreases the mean primary spacing, it also makes the dendrite array more disordered and reduces the ratio of the upper and lower spacing limits, as defined by the largest 5 pct and the smallest 5 pct of the population
Dust Devil Tracks
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
On the approximate evaluation of oscillatory-singular integrals
In this paper an efficient numerical scheme is proposed for the numerical computation of the Cauchy type oscillatory integral ; where f(x) is a well-behaved function without having any kind of singularity in the range of integration [−1; 1]. The scheme is devised with the help of quadrature rule meant for the approximate evaluation of Cauchy principal value of integrals of the type ; and a quasi exact quadrature meant for the numerical integration of Filon-type integrals. The error bounds are determined and the scheme numerically verified by some standard test integrals
Suitability of Gamma, Chi-square, Weibull, and Beta distributions as synthetic unit hydrographs
Most available methods for synthetic unit hydrograph (SUH) derivation involve manual, subjective fitting of a hydrograph through a few data points. Because of this tedious procedure, the generated unit hydrograph is often left unadjusted for unit runoff volume. During recent decades, use of probability distribution functions (pdfs) in developing SUH has received much attention because of its similarity with unit hydrograph properties. In this study, the potential of four popular pdfs, i.e., two-parameter Gamma, three-parameter Beta, two-parameter Weibull, and one-parameter Chi-square distribution to derive SUH have been explored. Simple formulae are derived using analytical and numerical schemes to compute the distribution parameters, and their validity is checked with simulation of field data. The Gamma and Chi-square distributions behave analogously, and the Beta distribution approximates a Gamma distribution in a limiting case. Application to field data shows that the Beta and Weibull distributions are more flexible in hydrograph prediction than the Gamma, Chi-square, Gray [Gray, D.M., 1961. Synthetic hydrographs for small drainage areas. In: Proceedings of the ASCE, 87, HY4, pp. 33-54], SCS [SCS, 1957. Use of Storm and Watershed Characteristics in Synthetic Hydrograph Analysis and Application: V. Mockus. US Dept. of Agriculture, Soil Conservation Service, Washington, DC], and Snyder [Synder, F.F., 1938. Synthetic unit hydrographs. Trans. Am. Geophys. Union 19, 447-454] methods. A sensitivity analysis of pdf parameters on peak flow estimates of an UH indicated that Gamma and Chi-square distributions overestimate the peak flow value, for any overestimation in its parameter estimates. However, for the Beta and Weibull distributions a reverse trend was observed. Both were found to behave similarly at higher @a (ratio of time to base and time to peak of UH) values. Further, an analogous triangular hydrograph approach was used to express the mean and variance of the UH in terms of time base and time to peak of the UH. This enabled a simple parameter estimation equation involving only time base and time to peak of the UH. Although the validity of this equation could not be evaluated with a proper amount of data, the results give an indication of the relationship between pdf and statistical properties of the UH to be further elaborated in future research