918 research outputs found

    Stereo visual odometry by combining points and lines

    Get PDF
    Poster presented at ICVSS2016: international Computer Vision Summer SchoolMost approaches to stereo visual odometry reconstruct the motion based on the tracking of point features along a sequence of images. However, in low-textured scenes it is often difficult to encounter a large set of point features, or it may happen that they are not well distributed over the image, so that the behavior of these algorithms deteriorates. This paper proposes a probabilistic approach to stereo visual odometry based on the combination of both point and line segment that works robustly in a wide variety of scenarios. The camera motion is recovered through non-linear minimization of the projection errors of both point and line segment features. The method, of course, is computationally more expensive that using only one type of feature, but still can run in real-time on a standard computer and provides interesting advantages, including a straightforward integration into any probabilistic framework commonly employed in mobile robotics.Universidad de Málag

    Robust Stereo Visual Odometry through a Probabilistic Combination of Points and Line Segments

    Get PDF
    Most approaches to stereo visual odometry reconstruct the motion based on the tracking of point features along a sequence of images. However, in low-textured scenes it is often difficult to encounter a large set of point features, or it may happen that they are not well distributed over the image, so that the behavior of these algorithms deteriorates. This paper proposes a probabilistic approach to stereo visual odometry based on the combination of both point and line segment that works robustly in a wide variety of scenarios. The camera motion is recovered through non-linear minimization of the projection errors of both point and line segment features. In order to effectively combine both types of features, their associated errors are weighted according to their covariance matrices, computed from the propagation of Gaussian distribution errors in the sensor measurements. The method, of course, is computationally more expensive that using only one type of feature, but still can run in real-time on a standard computer and provides interesting advantages, including a straightforward integration into any probabilistic framework commonly employed in mobile robotics.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Project "PROMOVE: Advances in mobile robotics for promoting independent life of elders", funded by the Spanish Government and the "European Regional Development Fund ERDF" under contract DPI2014-55826-R

    Geometric-based Line Segment Tracking for HDR Stereo Sequences

    Get PDF
    In this work, we propose a purely geometrical approach for the robust matching of line segments for challenging stereo streams with severe illumination changes or High Dynamic Range (HDR) environments. To that purpose, we exploit the univocal nature of the matching problem, i.e. every observation must be corresponded with a single feature or not corresponded at all. We state the problem as a sparse, convex, `1-minimization of the matching vector regularized by the geometric constraints. This formulation allows for the robust tracking of line segments along sequences where traditional appearance-based matching techniques tend to fail due to dynamic changes in illumination conditions. Moreover, the proposed matching algorithm also results in a considerable speed-up of previous state of the art techniques making it suitable for real-time applications such as Visual Odometry (VO). This, of course, comes at expense of a slightly lower number of matches in comparison with appearance based methods, and also limits its application to continuous video sequences, as it is rather constrained to small pose increments between consecutive frames.We validate the claimed advantages by first evaluating the matching performance in challenging video sequences, and then testing the method in a benchmarked point and line based VO algorithm.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.This work has been supported by the Spanish Government (project DPI2017-84827-R and grant BES-2015-071606) and by the Andalucian Government (project TEP2012-530)

    Accurate Stereo Visual Odometry with Gamma Distributions

    Get PDF
    Point-based stereo visual odometry systems typically estimate the camera motion by minimizing a cost function of the projection residuals between consecutive frames. Under some mild assumptions, such minimization is equivalent to maximizing the probability of the measured residuals given a certain pose change, for which a suitable model of the error distribution (sensor model) becomes of capital importance in order to obtain accurate results. This paper proposes a robust probabilistic model for projection errors, based on real world data. For that, we argue that projection distances follow Gamma distributions, and hence, the introduction of these models in a probabilistic formulation of the motion estimation process increases both precision and accuracy. Our approach has been validated through a series of experiments with both synthetic and real data, revealing an improvement in accuracy while not increasing the computational burden.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Project "PROMOVE: Advances in mobile robotics for promoting independent life of elders", funded by the Spanish Government and the "European Regional Development Fund ERDF" under contract DPI2014-55826-R

    Los retos del sector bancario español

    Get PDF
    Evento: Seminario 'La Cuarta revolución. ¿Cómo afecta la agenda digital a la economía y a la industria?. Organizado por: UIMP - APIE (Santander)Incluye versión en inglé

    Learning-based Image Enhancement for Visual Odometry in Challenging HDR Environments

    Full text link
    One of the main open challenges in visual odometry (VO) is the robustness to difficult illumination conditions or high dynamic range (HDR) environments. The main difficulties in these situations come from both the limitations of the sensors and the inability to perform a successful tracking of interest points because of the bold assumptions in VO, such as brightness constancy. We address this problem from a deep learning perspective, for which we first fine-tune a Deep Neural Network (DNN) with the purpose of obtaining enhanced representations of the sequences for VO. Then, we demonstrate how the insertion of Long Short Term Memory (LSTM) allows us to obtain temporally consistent sequences, as the estimation depends on previous states. However, the use of very deep networks does not allow the insertion into a real-time VO framework; therefore, we also propose a Convolutional Neural Network (CNN) of reduced size capable of performing faster. Finally, we validate the enhanced representations by evaluating the sequences produced by the two architectures in several state-of-art VO algorithms, such as ORB-SLAM and DSO

    Bancos, confianza y nuevas tecnologías

    Get PDF
    Evento: La banca ante los retos de la regulación, la rentabilidad y la digitalización. VIII Encuentro financiero. Organizado por: Expansión y KPMGIncluye versión en inglé

    Retos y oportunidades del sector bancario español. Discurso de apertura

    Get PDF
    Evento: 2ª Jornada del XXIV Encuentro del Sector Bancario, 'Un sector en transformación'. Organizado por: ABC, Deloitte y Sociedad de TasaciónIncluye versión en inglé

    La relación con el cliente bancario

    Get PDF
    Evento: 13 Encuentro del Sector Bancario 'Una Banca competitiva en una nueva sociedad'. Organizado por: IESE (Madrid)Incluye versión en inglé
    corecore