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Abstract— In this work, we propose a purely geometrical
approach for the robust matching of line segments for chal-
lenging stereo streams with severe illumination changes or
High Dynamic Range (HDR) environments. To that purpose,
we exploit the univocal nature of the matching problem,
i.e. every observation must be corresponded with a single
feature or not corresponded at all. We state the problem
as a sparse, convex, `1-minimization of the matching vector
regularized by the geometric constraints. This formulation
allows for the robust tracking of line segments along sequences
where traditional appearance-based matching techniques tend
to fail due to dynamic changes in illumination conditions.
Moreover, the proposed matching algorithm also results in a
considerable speed-up of previous state of the art techniques
making it suitable for real-time applications such as Visual
Odometry (VO). This, of course, comes at expense of a slightly
lower number of matches in comparison with appearance-
based methods, and also limits its application to continuous
video sequences, as it is rather constrained to small pose
increments between consecutive frames. We validate the claimed
advantages by first evaluating the matching performance in
challenging video sequences, and then testing the method in a
benchmarked point and line based VO algorithm.

I. INTRODUCTION

Although appearance-based tracking has reached a high
maturity for feature-based motion estimation, its robustness
in real-world scenarios is still an open challenge. In this
work, we are particularly interested in improving the ro-
bustness of visual feature tracking in sequences including
severe illumination changes or High Dynamic Range (HDR)
environments (see Figure 1). Under these circumstances, tra-
ditional descriptors based on local appearance, such as ORB
[1] and LBD [2] for points and line segments, respectively,
tend to provide many outliers and a low number matches, and
hence jeopardizing the performance of the visual tracker.

We claim that line segments can be successfully tracked
along video sequences by only considering their geometric
consistency along consecutive frames, namely, the oriented
direction in the image, the overlap between them, and the
epipolar constraints. To achieve robust matches from this
reduced segment description we need to introduce some
mechanism to deal with the ambiguity associated to such
purely geometrical line matching.

For that, we state the problem as a sparse, convex `1-
minimization of the geometrical constraints from any line
segment in the first image over all the candidates in the
second one, within a one-to-many scheme. This formulation
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Fig. 1. Pair of consecutive frames extracted from the sequence hdr/flicker1
from the dataset in [4] under challenging illumination changes. Our approach
allows for the robust tracking of line segments in this type of environ-
ments, where traditional appearance-based matching techniques tend to fail.
changes in illumination conditions or in HDR scenarios where traditional
appearance-based matching techniques tend to fail.

allows for the successful tracking of line segments as it only
accepts matches that are guaranteed to be globally unique.
In addition, the proposed method results in a considerable
speed-up of the tracking process in comparison with tradi-
tional appearance based methods. For this reason we believe
this method can be a suitable choice for motion estimation
algorithms intended to work in challenging environments,
even as a recovery stage when traditional descriptor-based
matching fails or does not provide enough correspondences.

To deal with outliers we impose some requiring constraints
(e.g. small baseline between the two consecutive images)

which slightly reduce the effectiveness of line matching
in scenes with repetitive structures and also the number of
tracked features.

In summary, the contributions of this paper are the fol-
lowing:
◦ A novel technique for the tracking of line segments

along continuous sequences based on a sparse, convex `1-
minimization of geometrical constraints, hence allowing
for robust matching under severe appearance variations
(see Figure 1).

◦ A efficient implementation of the proposed method yield-
ing a less computationally demanding line-segment tracker
which reduces one of the major drawbacks of working
with these features.

◦ Its validation in our previous point and line features stereo
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visual odometry system [5], resulting in a more robust VO
system under difficult illumination conditions, and also
reducing the computational burden of the algorithm.

These contributions are validated with extensive experimen-
tation in several datasets from a wide variety of environ-
ments, where we first compare the accuracy and precision of
the proposed tracking technique, and then show its perfor-
mance alongside a VO framework.

II. RELATED WORK

Feature-based motion reconstruction techniques, e.g. VO,
visual SLAM, or SfM, are typically addressed by detecting
and tracking several geometrical features (over one or sev-
eral frames) and then minimizing the reprojection error to
recover the camera pose. In this context, several success-
ful approaches have been proposed, such as PTAM [6], a
monocular SLAM algorithm that relies on FAST corners
and SSD search over a predicted patch in a coarse-to-fine
scheme for feature tracking. More recently, ORB-SLAM [7]
contributed with a very efficient and accurate SLAM system
based on a very robust local bundle adjustment stage thanks
to its fast and continuous tracking of keypoints for which
they relied on ORB features [1]. Unfortunately, even-though
binary descriptors are relatively robust to brightness changes,
these techniques suffer dramatically when traversing poorly
textured scenarios or severe illumination changes occur (see
Figure 1), as the number of tracked features drops.

Some works try to overcome the first situation by com-
bining different types of geometric features, such as edges
[8], edgelets [9], lines [10], or planes [11].The emergence
of specific line-segment detectors and descriptors, such as
LSD [3] and LBD [2] allowed to perform feature tracking in
a similar way as traditionally done with keypoints. Among
them, in [12] authors proposed a stereo VO algorithm relying
on image points and segments for which they implement
a stereo matching algorithm to compute the disparity of
several points along the line segment, thus dealing with
partial occlusions. In [5] we contribute with a stereo VO
system (PLVO) that probabilistically combines ORB fea-
tures and line segments extracted and matched with LSD
and LBD by weighting each observation with their inverse
covariance. In the SLAM context, the work in [13] proposes
two different representations: Plücker line coordinates for
the 3D projections, and an orthonormal representation for
the motion estimation, however, they track features through
an optical flow technique, thus the performance with fast
motion sequences deteriorates. Unfortunately, the benefits
of employing line segments come at the expense of higher
difficulties in dealing with them (and they require a high
computational burden in both detection and matching stages),
and, more importantly, they still suffer from the same issues
as keypoints when working with HDR environments.

A number of methods for dealing with varying illumi-
nation conditions have been reported. For example, [14]
proposed a direct approach to VO, known as DSO, with a
joint optimization of both the model parameters, the camera
motion, and the scene structure. They used the photometric

model of the camera as well as the affine brightness transfer
function to account for the brightness change. In [15] authors
contributed a robust gradient metric and adjusted the camera
setting according to the metric. They designed their exposure
control scheme based on the photometric model of the cam-
era and demonstrated improved performance with a state-of-
art VO algorithm [16]. Recently, [17] proposed a deep neural
network that embeds images into more informative ones,
which are robust to changes in illumination, and showed how
the addition of LSTM layers produces more stable results by
incorporating temporal information to the network. Although
those approaches have proven to be effective to moderate
changes in illumination or exposure, they would still suffer
in more challenging scenarios such as the one in Figure 1.

III. GEOMETRIC-BASED LINE SEGMENT TRACKING

A. Problem Statement

The first stage of our segment matching algorithm takes
as input a pair of images from a stereo video sequence,
I1 and I2, which can be either from the stereo pair or
two consecutive ones in the sequence. Let us define the
sets of line segments L1 = {si, ei | i ∈ 1, ...,m} and
L2 = {sj , ej | j ∈ 1, ..., n} in I1 and I2, where we
represent the line segment k by their endpoints sk and ek
in homogeneous coordinates. We also employ the vector of
the line

~lk =
sk − ek
‖sk − ek‖2

(1)

estimated from the segment endpoints to compare the geo-
metric features of each of them.

Then, given L1 and L2, our aim is to find the subset of
corresponding line segments between the two input images
(see Figure 3), defined as M12 = {(li, lj) | li ∈ L1 ∧ lj ∈
L2}. For li and lj to be a positive match, they must be
parallel, have a sufficient ovelap and be compliant with the
epipolar geometry of the two views. In order to impose the
lines to be parallel, we consider the angle formed by the two
line segments in the image plane, θij :

θij = atan( ||~li ×~lj || /~li ·~lj ). (2)

The above-mentioned expressions, however, might lead
to inconsistent results as any line in the image could sat-
isfy Equation (2) without being related to the query one.
Therefore, we deal with this phenomena by also defining
the overlap of two line segments ρij ∈ [0, 1] as the ratio
between their common parts, as depicted in Figure 2, where
ρij equals 0 and 1 when there is none or full overlapping
between the line segments, respectively. In addition, we also
define the ratio between the line lengths as:

µij =
max(Li, Lj)

min(Li, Lj)
(3)

where Lk = ‖sk − ek‖2 stands for the length of the k-th line,
which discards any likely pair of segments whose lengths are
not similar enough (if they are of similar length the value of
µij is close to one, and bigger than one otherwise).



Fig. 2. Scheme of the line segment overlap for both the stereo and frame-
to-frame cases. In the bottom image tk we plot the stereo overlap between
the reference line in the left image li and a match candidate in the right
one lRj , which is the ratio of the lengths of the shadowed areas (in blue
the overlap and in green the line’s length). Similarly, the above image tk+1

depicts the overlap between the reference line in the second image lk and
the projected line in the second frame lprevi .

Finally, we also consider epipolar geometry as a possible
constraint for the two different cases of study. In the first
case, stereo matching, we define the angle formed by the
middle point flow vector, xij = mi −mj where the middle
point is defined as mk = (sk + ek)/2, as:

θstij = asin(‖xij × η1‖ / ‖xij‖) (4)

where η1 stands for the director vector of the X direction. In
contrast, in the frame-to-frame case, we assume that images
are separated by a small motion and therefore we define the
angle formed by xij and the Y direction (whose unit vector
is given by η2), namely:

θffij = asin(‖xij × η2‖ / ‖xij‖). (5)

B. Sparse `1-Minimization for Line Segment Tracking

In this paper, we formulate line-segment tracking as a
sparse minimization problem solely based on the previously
introduced geometric constraints. Although this represen-
tation has been already employed in computer vision for
noise reduction [18], face recognition [19], and loop closure
detection [20] (among others), to the best of our knowledge
this is the first time it is employed for the geometric tracking
of line segment features. For that, we also take advantage of
the 1-sparse nature of the tracking problem, i.e. a single line
li from the first image should only have at most one match
candidate from the L2 set. It must be noticed that, in the
case of detecting divided lines, it is possible for more than
one line to match the query one, however, this case is even
more likely to occur with appearance based methods, as any
locally similar line in the image can be a candidate.

Let us define the n-dimensional matching vector ωi of the
line li ∈ L1 as:

ωi =
[
ωi0 ... ωij ... ωin

]>
(6)

where ωij equals one if li and lj are positive matches and
zero otherwise, and n stands for the number of line segments
in L2. Moreover, we define the line segment error vectors
βij and the objective b for both the stereo and frame-to-frame
cases as:

βij =


θij
θepipij

ρij
µij

 , b =


0
0
1
1

 (7)

for the line segments li ∈ L1 and lj ∈ L2, where epip refers
to the epipolar constraints defined in Equations (4) and (5)
for the two cases of study.

Now, by concatenating all line segment error vectors we
form the 4× n matrix Ai:

Ai =
[
βi0, ... βij , ... βin

]
. (8)

that must satisfy the linear constraint Aiωi = b if the sum
over all the components from the matching vector ωi is
one (which is our hypothesis). While `2-norm is usually
employed to solve the previous problem with the typical
least-squares formulation, it is worth noticing that it leads to
a dense representation of the optimal ω∗i , which contradicts
the 1-sparse nature of our solution.

In contrast, we can formulate the problem of finding
lj ∈ L2 that properly matches li ∈ L1 as a convex, sparse,
constrained `1-minimization as follows:

min
ωi

‖ωi‖1 subject to ‖Aiωi − b‖2 ≤ ε (9)

where the constraint corresponds to the above-mentioned
geometrical conditions, and ε > 0 is the maximum tolerance
for the constraint error. Moreover, the problem in Equation
(9) can be also solved with the homotopy approach [21] in
the following unconstrained manner:

min
ωi

λ ‖ωi‖1 +
1

2
‖Aiωi − b‖2 (10)

with λ a weighting parameter empirically set to 0.1, resulting
in a very effective and fast solver [22].

Then, we efficiently solve the problem in Equation (10)
for each li ∈ L1 obtaining the sparse vector ωi, which after
being normalized indicates whether the line segment li has a
positive match (in the maximum entry j of ωi). Finally, we
guarantee that line segments are uniquely corresponded by
only considering the candidate with minimum error, defined
as
∥∥βij

∥∥, if the error for the second best match is at least
2 times bigger than the best one. For further details on the
mathematics of this Section, please refer to [21].

C. Dealing with Outliers

When dealing with repetitive structures a number of out-
liers can appear. To deal with this problem in the stereo
case, we implement a filter based on the epipolar constraint,
for which we first estimate robustly the normal distribution
formed by the angles with the horizontal direction. Then, we
discard the matches whose angle with the horizontal direction



(a) LSD [3] + LBD [2]
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Fig. 3. Stereo correspondences between two different images from the
EuRoC dataset. Our matching algorithm is capable of finding matches that
does not necessarily have similar appearance.

lies above 2 times the standard deviation of the distribution
formed by all matches.

In the frame-to-frame case, as the camera pose is not
known yet, we cannot directly apply epipolar geometry.
However, we approximate an epipolar filter, based on the
assumption that input images belong to consecutive frames
from a sequence, and therefore they are separated by small
motions. For that, we discard the matches whose angle with
the vertical direction (this is the epipolar constraint in the
case of null motion) lies above 2 times the standard deviation
of the distribution formed by all matches as they are less
likely to fullfil the motion constraints.

IV. POINT-SEGMENT VISUAL ODOMETRY OVERVIEW

In this section we briefly describe the PLVO stereo visual
odometry system [5] where the proposed matching algorithm
has been integrated for line segment tracking. PLVO com-
bines probabilistically both point and line segment features
and its C++ implementation is available publicly https:
//github.com/rubengooj/StVO-PL.

1) Point Features: In PLVO points are detected and
described with ORB [1] (consisting of a FAST keypoint
detector and a BRIEF descriptor) due to its efficiency and
good performance. In order to reduce the number of out-
liers, we only consider the measurements that are mutual
best matches, and also check that the two best matches
are significantly separated in the description space by only
accepting matches whose distance between the two closest
correspondences is above the double of the distance to the
best match.

2) Line Segment Features: In our previous work [5] we
detect line segments with the Line Segment Detector (LSD)
[3] and also employ the Line Band Descriptor (LBD) [2]
for the stereo and frame-to-frame matching. Although this
method provides a high precision and repeatability, it still

presents very high computational requirements, simple detec-
tion and matching requires more than 30ms with 752× 480,
thus its use limits their application in real-time. In order to
reduce the computational burden of the Stereo VO system,
in this work we have also employed the Fast Line Detector
(FLD) [23], which is based on connecting collinear Canny
edges [24]. This detector works faster than LSD at expense of
a poorer performance in detecting meaningful lines, i.e. lines
with strong local support along all the lines, since, unlike
LSD, detection is only based on image edges.

3) Motion Estimation: After obtaining a set of point and
line correspondences, we then recover the camera motion
with iterative Gauss-Newton minimization of the projection
errors in each case (in the case of line segments we employ
the distance from the projected endpoint, to the line in the
next frame). To mitigate the undesirable effect of outliers and
noisy measurements, we perform a two steps minimization
for which we weight the observations with a Pseudo-Huber
loss function, and then we remove the outliers and refine the
solution.

V. EXPERIMENTAL VALIDATION

We evaluate the performance and robustness of our pro-
posal in several public datasets for two different line segment
detectors, LSD [3] and FLD [23], when employing two
different matching strategies: our proposal, and traditional
appearance based tracking with LBD [2]. All the experiments
have run on an Intel Core i7-3770 CPU @ 3.40 GHz and
8GB RAM without GPU parallelization. In our experiments
we have employed a fixed number of detected lines set to
100, and 600 ORB [1] features for the case of points and
line based VO.

A. Tracking Performance

First, we compare the line segment tracking performance
of our proposal against traditional feature matching ap-
proaches. For that, we took several sequences (at different
speeds) and classified each match as an inlier if the corre-
spondent line segment projection error is less than one pixel
when employing the groundtruth transformation. In order to
compare the algorithms under dynamic illumination changes,
we have employed two specific datasets: one extracted from
[4] (hdr) taken with an RGB-D sensor under HDR situations,
and another one from our previous work [25] (dnn) contain-
ing a number of difficult dynamic illumination conditions.
In addition, we also have employed the Tsukuba Stereo
Dataset [26] , a synthetic dataset rendered under 4 different
illuminations, i.e. fluorescent, lamps, flashlight, and daylight.
For a more challenging set of experiments, we have also
employed to use all combinations (taking fluorescent as refer-
ence) of the rendered sequences, by setting the left one to the
reference and the right one to all different possibilities. It is
worth noticing that illumination changes from the considered
datasets are produced punctually, and after that, the scene
illumination usually keeps constant until the next change.
This benefits to descriptor-based techniques when evaluating
the tracking performance during the whole sequence, for
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TABLE I
TRACKING PERFORMANCE OF OUR PROPOSAL AND TRADITIONAL LINE SEGMENT FEATURE MATCHING (NUMBER OF MATCHES - INLIERS).

Dataset Resolution LSD + LBD LSD + L1 FLD + LBD FLD + L1

hdr/bear 640× 480 72 80 % 39 94 % 65 73 % 45 86 %
hdr/desk 640× 480 70 84 % 40 93 % 60 83 % 41 88 %
hdr/floor1 640× 480 27 77 % 22 85 % 29 77 % 33 85 %
hdr/floor2 640× 480 71 80 % 42 93 % 61 80 % 41 87 %
hdr/sofa 640× 480 58 81 % 41 90 % 49 81 % 45 84 %
hdr/whiteboard 640× 480 41 76 % 35 95 % 42 75 % 35 90 %
hdr/flicker1 640× 480 42 84 % 45 98 % 44 80 % 40 95 %
hdr/flicker2 640× 480 86 89 % 45 98 % 74 85 % 45 97 %

dnn/1-light 752× 480 16 94 % 15 100 % 19 90 % 18 100 %
dnn/2-lights 752× 480 29 94 % 18 100 % 38 92 % 24 97 %
dnn/3-lights 752× 480 49 90 % 35 100 % 57 91 % 35 97 %
dnn/change-light 752× 480 19 85 % 14 100 % 24 95 % 18 100 %
dnn/hdr1 752× 480 55 90 % 35 100 % 51 88 % 35 95 %
dnn/hdr2 752× 480 50 90 % 32 97 % 52 93 % 39 95 %
dnn/overexp 752× 480 84 94 % 55 98 % 75 92 % 47 96 %
dnn/overexp-change-light 752× 480 82 92 % 50 98 % 72 90 % 43 96 %
dnn/low-texture 752× 480 53 88 % 35 100 % 52 90 % 35 97 %
dnn/low-texture-rot 752× 480 43 90 % 30 100 % 40 90 % 30 95 %

tsukuba 640× 480 43 86 % 34 84 % 36 75 % 21 86 %
tsukuba/fluor(L)-daylight(R) 640× 480 5 40 % 15 80 % 5 40 % 12 80 %
tsukuba/fluor(L)-flashlight(R) 640× 480 2 33 % 5 60 % 2 50 % 4 50 %
tsukuba/fluor(L)-lamps(R) 640× 480 1 0 % 5 60 % 1 0 % 3 67 %

which we also recommend to watch the attached video for
visual evaluation under such circumstances.

Table I shows the tracking accuracy and the number of
features tracked, for all the sequences from each considered
dataset. First, we observe a slightly inferior performance
of FLD [23] in comparison against LSD [3], due to its
lower repeatability in contrast with its superior computational
performance (see Table III). In general, we observe that our
matching method decreases the number of features, due to
the very requiring assumptions of our matching technique,
however, it provides a higher ratio of inliers thanks to the
extra stage explained in Section III.

As for the Tsukuba dataset, we observe that the number
of features successfully tracked dramatically decreases as
the response of the detectors is not capable of producing a
compatible set of lines from the same images. However, we
observe that our method technique is capable of recovering
more matches, specially in the less challenging case (fluo-
rescent and daylight), that can be employed along different
sensing to extract more information from the environment in
such difficult situations.

B. Robustness Evaluation in Stereo Visual Odometry

In this set of experiments, we test the performance of the
compared algorithms in the EuRoC [27] dataset. In order
to simulate changes in exposure time or illumination within
the EuRoC dataset [27] (we will refer to simulated sequences
with an asterisk) we change the gain and bias of the image
with two uniform distribution, i.e. α = U(0.5, 2.5) and β =
U(0, 20) pixels every 30 seconds. For that comparison, we
not only focus in the accuracy of the estimated trajectories,
but also in the robustness of the algorithms under different
environment conditions (we mark a dash those experiments
where the algorithm lose the track). We compare the accuracy

TABLE II
RELATIVE RMSE ERRORS IN THE EUROC MAV DATASET [27].

Sequence LVO (FLD) LVO-L1 (FLD) LVO (LSD) LVO-L1 (LSD)

MH-01-easy 0.0641 0.0788 0.0669 0.0716
MH-02-easy 0.0826 0.0923 0.0740 0.0881
MH-03-med 0.0886 0.1011 0.0898 0.1004
MH-04-diff 0.1500 0.1536 0.1429 0.1518
MH-05-diff 0.1350 0.1529 0.1391 0.1561
V1-01-easy 0.0890 0.0969 0.0876 0.0954
V1-02-med 0.0662 0.0847 0.0606 0.0947
V1-03-diff 0.2261 0.1518 0.0765 0.1103
V2-01-easy 0.1980 0.1868 0.1662 0.1898
V2-02-med 0.1634 0.2294 0.1982 0.2562
V2-03-diff 0.2329 0.2342 0.2354 0.2275

MH-01-easy* 0.0787 0.0897 0.0741 0.0728
MH-02-easy* 0.0873 0.1015 0.8237 0.0981
MH-03-med* 0.0982 0.1578 0.0916 0.1141
MH-04-diff* 0.1540 0.1780 0.1354 0.1621
MH-05-diff* - 0.1603 - 0.1863
V1-01-easy* 0.0880 0.1011 0.0997 0.1041
V1-02-med* 0.0858 0.0953 0.0713 0.1096
V1-03-diff* - 0.2087 - 0.1598
V2-01-easy* - 0.2396 - 0.2080
V2-02-med* - 0.2472 - 0.2563
V2-03-diff* - - - 0.2631

of trajectories obtained with our previous stereo VO system,
PLVO [5], against our proposal tracking strategy, PLVO-L1,
when employing LSD or FLD features.

Table II contains the results by computing the relative
RMSE in translation for the estimated trajectories. As we can
observe, in the raw dataset our approach performs slightly
worse than standard appearance-based tracking techniques,
mainly due to the lower number of correspondences provided
by our algorithm, as mentioned in previous Section. In
contrast, we can observe a considerable decrease in accuracy
of our approaches, however, they are capable of estimating
the motion in all sequences with an lower accuracy, mainly
due to the less number of matches, due to restrictive con-
straints. For this reason we believe our matching technique a



TABLE III
COMPARISON OF THE COMPUTATIONAL PERFORMANCE OF THE

DIFFERENT CONSIDERED ALGORITHMS.

Monocular Tracking Stereo Tracking

LSD + LBD 39.342 ms 51.347 ms
LSD + Our 25.897 ms 35.828 ms

FLD + LBD 18.147 ms 33.266 ms
FLD + Our 7.654 ms 23.445 ms

suitable option to address the line segment tracking problem
under severe appearance changes, in combination with prior
information from different sensors and/or algorithms.

C. Computational Cost

Finally, we compare the computational performance of
the different tracking algorithms in the considered datasets
considering the time of processing one image (similarly to
the VO framework). In the both cases we can observe the
superior performance of our proposal, it runs between 1.5
and 2 times faster depending on the detector employed,
thanks to the efficient implementation of the geometric-based
tracking thus making it very suitable for robust real-time
application, most likely in combination with other sensing,
such as inertial measurement unit sensors (IMU).

VI. CONCLUSIONS

In this work, we have proposed a geometrical approach for
the robust matching of line segments for challenging stereo
streams, such as sequences including severe illumination
changes or HDR environments. For that, we exploit the na-
ture of the matching problem, i.e. every observation can only
be corresponded with a single feature in the second image
or not corresponded at all, and hence we state the problem
as a sparse, convex, `1-minimization of the matching vector
regularized by the geometric constraints. Thanks to this for-
mulation we are able of robustly tracking line segments along
sequences recorded under dynamic changes in illumination
conditions or in HDR scenarios where usual appearance-
based matching techniques fail. We validate the claimed
features by first evaluating the matching performance in
challenging video sequences, and then testing the system in
a benchmarked point and line based VO algorithm showing
promising results.
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