8 research outputs found

    Integrin α2β1 decelerates proliferation, but promotes survival and invasion of prostate cancer cells

    Get PDF
    High expression level of integrin α2β1 is a hallmark of prostate cancer stem cell like cells. The role of this collagen receptor is controversial since it is down regulated in poorly differentiated carcinomas, but concomitantly proposed to promote metastasis. Here, we show that docetaxel resistant DU145 prostate cancer cells express high levels of α2β1 and that α2β1High subpopulation of DU145 cells proliferates slower than the cells representing α2β1Low subpopulation. To further study this initial observation we used Crispr/Cas9 technology to create an α2β1 negative DU145 cell line. Furthermore, we performed rescue experiment by transfecting α2 knockout cells with vector carrying α2 cDNA or with an empty vector for appropriate control. When these two cell lines were compared, α2β1 positive cells proliferated slower, were more resistant to docetaxel and also migrated more effectively on collagen and invaded faster through matrigel or collagen. Integrin α2β1 was demonstrated to be a positive regulator of p38 MAPK phosphorylation and a selective p38 inhibitor (SB203580) promoted proliferation and inhibited invasion. Effects of α2β1 integrin on the global gene expression pattern of DU145 cells in spheroid cultures were studied by RNA sequencing. Integrin α2β1 was shown to regulate several cancer progression related genes, most notably matrix metalloproteinase-1 (MMP-1), a recognized invasion promoting protein. To conclude, the fact that α2β1 decelerates cell proliferation may explain the dominance of α2β1 negative/low cells in primary sites of poorly differentiated carcinomas, while the critical role of α2β1 integrin in invasion stresses the importance of this adhesion receptor in cancer dissemination.</p

    Interaction between prostate cancer cells and prostate fibroblasts promotes accumulation and proteolytic processing of basement membrane proteins

    Get PDF
    Background Tumor microenvironment or stroma has the potency to regulate the behavior of malignant cells. Fibroblast-like cells are abundant in tumor stroma and they are also responsible for the synthesis of many extracellular matrix components. Fibroblast-cancer cell interplay can modify the functions of both cell types.Methods We applied mass spectrometry and proteomics to unveil the matrisome in 3D spheroids formed by DU145 prostate cancer cells, PC3 prostate cancer cells, or prostate-derived fibroblasts. Similarly, DU145/fibroblast and PC3/fibroblast coculture spheroids were also analyzed. Western blot analysis and immunofluorescence were used to confirm the presence of specific proteins in spheroids. Cancer dissemination was studied by utilizing "out of spheroids" migration and invasion assays.Results In the spheroid model cancer cell-fibroblast interplay caused remarkable changes in the extracellular matrix and accelerated the invasion of DU145 cells. Fibroblasts produced structural matrix proteins, growth factors, and matrix metalloproteinases. In cancer cell/fibroblast cocultures basement membrane components, including laminins (alpha 3, alpha 5, beta 2, and beta 3), heparan sulfate proteoglycan (HSPG2 gene product), and collagen XVIII accumulated in a prominent manner when compared with spheroids that contained fibroblasts or cancer cells only. Furthermore, collagen XVIII was intensively processed to different endostatin-containing isoforms by cancer cell-derived cathepsin L.Conclusions Fibroblasts can promote carcinoma cell dissemination by several different mechanisms. Extracellular matrix and basement membrane proteins provide attachment sites for cell locomotion promoting adhesion receptors. Growth factors and metalloproteinases are known to accelerate cell invasion. In addition, cancer cell-fibroblast interplay generates biologically active fragments of basement membrane proteins, such as endostatin

    FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy

    Get PDF
    Gene copy number alterations, tumor cell stemness, and the development of platinum chemotherapy resistance contribute to high-grade serous ovarian cancer (HGSOC) recurrence. Stem phenotypes involving Wnt-beta-catenin, aldehyde dehydrogenase activities, intrinsic platinum resistance, and tumorsphere formation are here associated with spontaneous gains in Kras, Myc and FAK (KMF) genes in a new aggressive murine model of ovarian cancer. Adhesion-independent FAK signaling sustained KMF and human tumorsphere proliferation as well as resistance to cisplatin cytotoxicity. Platinum-resistant tumorspheres can acquire a dependence on FAK for growth. Accordingly, increased FAK tyrosine phosphorylation was observed within HGSOC patient tumors surviving neo-adjuvant chemotherapy. Combining a FAK inhibitor with platinum overcame chemoresistance and triggered cell apoptosis. FAK transcriptomic analyses across knockout and reconstituted cells identified 135 targets, elevated in HGSOC, that were regulated by FAK activity and beta-catenin including Myc, pluripotency and DNA repair genes. These studies reveal an oncogenic FAK signaling role supporting chemoresistance

    Tumor FAK orchestrates immunosuppression in ovarian cancer via the CD155/TIGIT axis

    No full text
    High-grade serous ovarian cancer (HGSOC) is a lethal malignancy characterized by an immunosuppressive tumor microenvironment containing few tumor infiltrating lymphocytes (TILs) and an insensitivity to checkpoint inhibitor immunotherapies. Gains in the PTK2 gene encoding focal adhesion kinase (FAK) at Chr8 q24.3 occur in ∼70% of HGSOC tumors, and elevated FAK messenger RNA (mRNA) levels are associated with poor patient survival. Herein, we show that active FAK, phosphorylated at tyrosine-576 within catalytic domain, is significantly increased in late-stage HGSOC tumors. Active FAK costained with CD155, a checkpoint receptor ligand for TIGIT (T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains), in HGSOC tumors and a selective association between FAK and TIGIT checkpoint ligands were supported by patient transcriptomic database analysis. HGSOC tumors with high FAK expression were associated with low CD3 mRNA levels. Accordingly, late-stage tumors showed elevated active FAK staining and significantly lower levels of CD3+ TILs. Using the KMF (Kras, Myc, FAK) syngeneic ovarian tumor model containing spontaneous PTK2 (FAK) gene gains, the effects of tumor intrinsic genetic or oral small molecule FAK inhibitior (FAKi; VS-4718) were evaluated in vivo. Blocking FAK activity decreased tumor burden, suppressed ascites KMF-associated CD155 levels, and increased peritoneal TILs. The combination of FAKi with blocking TIGIT antibody (1B4) maintained elevated TIL levels and reduced TIGIT+ T regulatory cell levels, prolonged host survival, increased CXCL13 levels, and led to the formation of omental tertiary lymphoid structures. Collectively, our studies support FAK and TIGIT targeting as a rationale immunotherapy combination for HGSOC
    corecore