21 research outputs found

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic

    Removal of organic micropollutants in water using surface modified membrane systems.

    Get PDF
    The health risk of organic micro pollutants in water is yet to be comprehensively established. However, the persistence of these pollutants in the environment as a result of continuous discharge even at trace concentrations is considered to pose major environmental concerns. Advance treatment methods such as membrane-assisted processes (MAPs) are potential technologies capable of removing a wide range of these organic micropollutants (OMPs) detected in water. In this study, investigation of surface-coated ultrafiltration (UF) poly(vinylidene fluoride) (PVDF) hollow fibre membrane for the removal of organic micropollutants (OMPs) in water was performed. Coating of PVDF membranes with poly(1-phenylethene-1,2-diyl)/polystyrene and pluronics F68 solutions through physical adsorption was carried out in two modes: “dipping” and “spraying”. Surface characterization of coated membranes showed that the coating layer potentially influenced the surface properties suitable for improved solute-membrane interaction. Characterization of the pore size and distribution through Scanning electron microscopy (SEM) images analysis showed that polystyrene coating in sprayed and dipped coating procedure, exhibited more reduction in pore size (19−31%) and closer pore size distribution than the pluronics F68 dip coating (6%). The average roughness (Ra) and maximum peak-to-valley distance (Rmax) measured using the Atomic Force microscopy (AFM) recorded more roughness and irregularity in surface topography in the polystyrene coated membranes compared to the pluronics F68 coating with the dipped polystyrene coating method attaining more roughness (Ra – 0.393 ”m). Contact Angle (CA) measurements showed that the dipped Polystyrene coated membrane achieved the highest increase in hydrophobicity (29%) while the dipped pluronics F68 coating achieved a 10% increase. Correlation between the changes in surface roughness and hydrophobicity was evident in the study. Generally, the polystyrene material impacted the membrane surface the most, and the dipped coating procedure recorded the highest surface modification impacts. The performances of the coated membranes in the rejection of the model organic micropollutants, caffeine (hydrophilic) and carbamazepine (hydrophobic) spiked (as single and mixed components) in various water matrices i.e. deionized water, surface water and synthetic wastewater (at concentration range of 300 -1000 ÎŒg/L) correlated with the coating materials and methods used. The dip-coated membranes using polystyrene material, achieved better removal of recalcitrant hydrophobic carbamazepine compared to the spray-coated membrane in deionised water, but not in other water matrices. Whereas for both methods of coating, removal of caffeine was relatively insignificant in deionised water but reasonably higher in surface water and synthetic wastewater. From these results, it is inferred that hydrophobic interactions and size exclusion might be the major removal mechanisms involved in rejection by the coated membranes and the colloidal and particulate matter in surface water and fouling in membrane bioreactor system facilitated sorption removal mechanism. The membrane coating enhanced reduction of the pore size, decreasing the membrane permeability and providing more sites for possible solute-membrane interactions. it is demonstrated that physical adsorption of functional polymers is a simple and efficient way to modify the surface properties of polymeric membranes for water filtration application

    Removal of organic micropollutants using membrane assisted processes: a review of recent progress

    No full text
    The health risk of organic micro pollutants in water is yet to be comprehensively established. However, the persistence of these pollutants in the environment as a result of continuous discharge even at trace concentrations is considered to pose major environmental concerns. Advance treatment methods such as membrane-assisted processes (MAPs) are potential technologies capable of removing a wide range of these organic micropollutants (OMPs) detected in water. Tight membranes as regards pore size are reported to be more efficient than loose membranes mainly because of the removal mechanism involved, which is mainly influenced by the properties of the membrane and the pollutants in relation to solute–solute and solute–membrane interaction. The study and application of membrane processes to water and wastewater treatment have grown significantly in the last decade. Membrane processes application is diverse and flexible enough to allow adaptation into other physicochemical processes. Integration and hybridization of membrane processes with other physicochemical processes and natural systems are becoming a more economical and sustainable option for removal of OMPs. Nevertheless, there are shortfalls in the industrial application of membrane-assisted technologies. This paper reviews and assesses the applicability of various MAPs applied for the removal of OMPs from water and wastewater streams

    Removal of organic micropollutants using membrane assisted processes: a review of recent progress

    No full text
    The health risk of organic micro pollutants in water is yet to be comprehensively established. However, the persistence of these pollutants in the environment as a result of continuous discharge even at trace concentrations is considered to pose major environmental concerns. Advance treatment methods such as membrane-assisted processes (MAPs) are potential technologies capable of removing a wide range of these organic micropollutants (OMPs) detected in water. Tight membranes as regards pore size are reported to be more efficient than loose membranes mainly because of the removal mechanism involved, which is mainly influenced by the properties of the membrane and the pollutants in relation to solute–solute and solute–membrane interaction. The study and application of membrane processes to water and wastewater treatment have grown significantly in the last decade. Membrane processes application is diverse and flexible enough to allow adaptation into other physicochemical processes. Integration and hybridization of membrane processes with other physicochemical processes and natural systems are becoming a more economical and sustainable option for removal of OMPs. Nevertheless, there are shortfalls in the industrial application of membrane-assisted technologies. This paper reviews and assesses the applicability of various MAPs applied for the removal of OMPs from water and wastewater streams

    Rejection of Caffeine and Carbamazepine by surface coated PVDF hollow-fiber membrane system

    Get PDF
    This research investigates surface coated ultrafiltration (UF) polyvinylidene fluoride (PVDF) hollow fiber membrane for the removal of organic micropollutants (OMPs) in water. Coating of PVDF membranes with Poly (1-phenylethene-1,2-diyl) - Polystyrene solution through physical adsorption was carried out under two modes, ‘dipped’ and ‘sprayed’. The performance of the coated membrane in the rejection of model organic micropollutants, caffeine and carbamazepine spiked in deionised water (at 300 g/L and 500 g/L), correlated with the coating methods used. Dipped coated membrane showed a better removal of recalcitrant hydrophobic carbamazepine compared to the ‘sprayed’ coated membrane; while for both methods of coating, removal of caffeine was relatively insignificant. Inferably, hydrophobic interaction and size exclusion may be the major removal mechanism involved in the rejection by the coated membranes. The coating layer potentially enhanced reduction of pore size with resulting effect on membrane permeability and providing more sites for possible hydrophobic interaction

    Rejection of Caffeine and Carbamazepine by surface coated PVDF hollow-fiber membrane system

    No full text
    This research investigates surface coated ultrafiltration (UF) polyvinylidene fluoride (PVDF) hollow fiber membrane for the removal of organic micropollutants (OMPs) in water. Coating of PVDF membranes with Poly (1-phenylethene-1,2-diyl) - Polystyrene solution through physical adsorption was carried out under two modes, ‘dipped’ and ‘sprayed’. The performance of the coated membrane in the rejection of model organic micropollutants, caffeine and carbamazepine spiked in deionised water (at 300 g/L and 500 g/L), correlated with the coating methods used. Dipped coated membrane showed a better removal of recalcitrant hydrophobic carbamazepine compared to the ‘sprayed’ coated membrane; while for both methods of coating, removal of caffeine was relatively insignificant. Inferably, hydrophobic interaction and size exclusion may be the major removal mechanism involved in the rejection by the coated membranes. The coating layer potentially enhanced reduction of pore size with resulting effect on membrane permeability and providing more sites for possible hydrophobic interaction

    Citalopram and fluoxetine affects blood chemistry, hematology and brain serotonin in Rats

    No full text
    Background: Depression is caused as a result of combination of genetic, biochemical, environmental, and psychological factors. Citalopram and fluoxetine are antidepressants which are considered the current standard for depression treatment. There are little or no reports as to whether these antidepressants affect blood chemistry and haematological parameters in humans.Objective: The effects of citalopram and fluoxetine on blood chemistry, hematology and brain serotonin in rats were investigated.Methods: Forty-five Sprague Dawley male albino rats (140.69 ±5.86g) were divided into 3 equal groups. The first group of rats were orally administered 2ml of 0.25mg/ml of citalopram, the second group was administered 2ml of 0.25mg/ml of fluoxetine and the third group was administered 2ml of saline (0.89% NaCl) daily for 4 weeks. The body weights and feed intake of rats were recorded every other day throughout the duration of drug administration. Five rats from each group were sacrificed by cervical dislocation after 7, 14, 21 and 28 days of drug administration. Blood was taken intravenously into lithium heparinized tubes and brain excised. Blood chemistry and hematology were determined by auto analyzer, while brain serotonin levels were determined using High Performance Liquid Chromatography. Serum levels of creatinine, urea, albumin, protein, glucose and activities of aspartate aminotransferase (AST) and alanine amino transferase (ALT) were determined in rats administered citalopram, fluoxetine and saline. The packed cell volume, white blood cells, red blood cells and platelets of rats administered the respective drugs were determined.Results: There was no significant (P>0.01) difference in the mean body weight of rats administered fluoxetine, citalopram or saline for 2 weeks. There were no significant differences in the hematological parameters of rats. The results of the study showed that citalopram increase the body weight of rats in the third and fourth week and was reduced in fluoxetine administered rats. The drugs also affected brain serotonin level, lipid profile of rats and increased levels of albumin, glucose and activities of liver enzymes; aspartate aminotransferase and alanine aminotransferase.Conclusion: Data of the study indicate that oral administration of citalopram and fluoxetine in rats for 4 weeks daily affected blood chemistry and do not affect haematological parameters..Keywords: Citalopram, fluoxetine, blood chemistry, hematology, brain serotonin, rat
    corecore