655 research outputs found

    Random quantum codes from Gaussian ensembles and an uncertainty relation

    Full text link
    Using random Gaussian vectors and an information-uncertainty relation, we give a proof that the coherent information is an achievable rate for entanglement transmission through a noisy quantum channel. The codes are random subspaces selected according to the Haar measure, but distorted as a function of the sender's input density operator. Using large deviations techniques, we show that classical data transmitted in either of two Fourier-conjugate bases for the coding subspace can be decoded with low probability of error. A recently discovered information-uncertainty relation then implies that the quantum mutual information for entanglement encoded into the subspace and transmitted through the channel will be high. The monogamy of quantum correlations finally implies that the environment of the channel cannot be significantly coupled to the entanglement, and concluding, which ensures the existence of a decoding by the receiver.Comment: 9 pages, two-column style. This paper is a companion to quant-ph/0702005 and quant-ph/070200

    Entanglement in squeezed two-level atom

    Full text link
    In the previous paper, we adopted the method using quantum mutual entropy to measure the degree of entanglement in the time development of the Jaynes-Cummings model. In this paper, we formulate the entanglement in the time development of the Jaynes-Cummings model with squeezed states, and then show that the entanglement can be controlled by means of squeezing.Comment: 6 pages, 5 figures, to be published in J.Phys.

    Bounds on general entropy measures

    Full text link
    We show how to determine the maximum and minimum possible values of one measure of entropy for a given value of another measure of entropy. These maximum and minimum values are obtained for two standard forms of probability distribution (or quantum state) independent of the entropy measures, provided the entropy measures satisfy a concavity/convexity relation. These results may be applied to entropies for classical probability distributions, entropies of mixed quantum states and measures of entanglement for pure states.Comment: 13 pages, 3 figures, published versio

    Complementarity and the algebraic structure of 4-level quantum systems

    Full text link
    The history of complementary observables and mutual unbiased bases is reviewed. A characterization is given in terms of conditional entropy of subalgebras. The concept of complementarity is extended to non-commutative subalgebras. Complementary decompositions of a 4-level quantum system are described and a characterization of the Bell basis is obtained.Comment: 19 page

    Semiclassical properties and chaos degree for the quantum baker's map

    Get PDF
    We study the chaotic behaviour and the quantum-classical correspondence for the baker's map. Correspondence between quantum and classical expectation values is investigated and it is numerically shown that it is lost at the logarithmic timescale. The quantum chaos degree is computed and it is demonstrated that it describes the chaotic features of the model. The correspondence between classical and quantum chaos degrees is considered.Comment: 30 pages, 4 figures, accepted for publication in J. Math. Phy

    Local asymptotic normality for qubit states

    Full text link
    We consider n identically prepared qubits and study the asymptotic properties of the joint state \rho^{\otimes n}. We show that for all individual states \rho situated in a local neighborhood of size 1/\sqrt{n} of a fixed state \rho^0, the joint state converges to a displaced thermal equilibrium state of a quantum harmonic oscillator. The precise meaning of the convergence is that there exist physical transformations T_{n} (trace preserving quantum channels) which map the qubits states asymptotically close to their corresponding oscillator state, uniformly over all states in the local neighborhood. A few consequences of the main result are derived. We show that the optimal joint measurement in the Bayesian set-up is also optimal within the pointwise approach. Moreover, this measurement converges to the heterodyne measurement which is the optimal joint measurement of position and momentum for the quantum oscillator. A problem of local state discrimination is solved using local asymptotic normality.Comment: 16 pages, 3 figures, published versio

    Instruments and channels in quantum information theory

    Full text link
    While a positive operator valued measure gives the probabilities in a quantum measurement, an instrument gives both the probabilities and the a posteriori states. By interpreting the instrument as a quantum channel and by using the typical inequalities for the quantum and classical relative entropies, many bounds on the classical information extracted in a quantum measurement, of the type of Holevo's bound, are obtained in a unified manner.Comment: 12 pages, revtex

    A quantum measure of coherence and incompatibility

    Full text link
    The well-known two-slit interference is understood as a special relation between observable (localization at the slits) and state (being on both slits). Relation between an observable and a quantum state is investigated in the general case. It is assumed that the amount of ceherence equals that of incompatibility between observable and state. On ground of this, an argument is peresented that leads to a natural quantum measure of coherence, called "coherence or incompatibility information". Its properties are studied in detail making use of 'the mixing property of relative entropy' derived in this article. A precise relation between the measure of coherence of an observable and that of its coarsening is obtained and discussed from the intutitive point of view. Convexity of the measure is proved, and thus the fact that it is an information entity is established. A few more detailed properties of coherence information are derived with a view to investigate final-state entanglement in general repeatable measurement, and, more importantly, general bipartite entanglement in follow ups of this study.Comment: 19 GS pages; supercedes quant-ph/030921

    A note on the Landauer principle in quantum statistical mechanics

    Full text link
    The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than kTlog2kTlog 2. We discuss Landauer's principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Araki's perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauer's bound saturates for adiabatically switched interactions. The recent work of Reeb and Wolf on the subject is discussed and compared
    • …
    corecore