1,833 research outputs found

    Estradiol, Progesterone, and Transforming Growth Factor α Regulate Insulin-Like Growth Factor Binding Protein-3 (IGFBP3) Expression in Mouse Endometrial Cells

    Get PDF
    Insulin-like growth factor 1 (IGF1) Is Involved in the proliferation of mouse and rat endometrial cells in a paracrine or autocrine manner. Insulin-like growth factor binding protein-3 (IGFBP3) modulates actions of IGFs directly or indirectly. The present study aimed to determine whether IGFBP3 is Involved In the regulation of proliferation of mouse endometrial cells. Mouse endometrial epithelial cells and stromal cells were isolated, and cultured In a serum free medium. IGF1 stimulated DNA synthesis by endometrial epithelial and stromal cells, and IGFBP3 Inhibited IGF1-induced DNA synthesis. Estradiol-17 beta (E2) decreased the Igfbp3 mRNA level in endometrial stromal cells, whereas It Increased the Igf1 mRNA level. Transforming growth factor alpha (TGF alpha) significantly decreased IGFBP3 expression at both the mRNA and secreted protein levels in endometrial stromal cells. Progesterone (134) did not affect the E2-induced down-regulation of Igfbp3 mRNA expression in endometrial stromal cells, although P4 alone increased Igfbp3 mRNA levels. The present findings suggest that in mouse endometrial stromal cells E2 enhances IGF1 action through enhancement of IGF1 synthesis and reduction of IGFBP3 synthesis, and that TGF alpha affects IGF1 actions through modulation of IGFBP3 levels

    Quantum transport properties of two-dimensional systems in disordered magnetic fields with a fixed sign

    Full text link
    Quantum transport in disordered magnetic fields is investigated numerically in two-dimensional systems. In particular, the case where the mean and the fluctuation of disordered magnetic fields are of the same order is considered. It is found that in the limit of weak disorder the conductivity exhibits a qualitatively different behavior from that in the conventional random magnetic fields with zero mean. The conductivity is estimated by the equation of motion method and by the two-terminal Landauer formula. It is demonstrated that the conductance stays on the order of e2/he^2/h even in the weak disorder limit. The present behavior can be interpreted in terms of the Drude formula. The Shubnikov-de Haas oscillation is also observed in the weak disorder regime.Comment: 6 pages, 7 figures, to appear in Phys. Rev.

    Efficient linear solvers for mortar finite-element method

    Get PDF

    Anderson transitions in three-dimensional disordered systems with randomly varying magnetic flux

    Full text link
    The Anderson transition in three dimensions in a randomly varying magnetic flux is investigated in detail by means of the transfer matrix method with high accuracy. Both, systems with and without an additional random scalar potential are considered. We find a critical exponent of ν=1.45±0.09\nu=1.45\pm0.09 with random scalar potential. Without it, ν\nu is smaller but increases with the system size and extrapolates within the error bars to a value close to the above. The present results support the conventional classification of universality classes due to symmetry.Comment: 4 pages, 2 figures, to appear in Phys. Rev.

    Apatite Formation Abilities and Mechanical Properties of Hydroxyethylmethacrylate-based Organic-inorganic Hybrids Incorporated with Sulfonic Groups and Calcium Ions

    Get PDF
    Apatite formation in the living body is an essential requirement for artificial materials to exhibit bone-bonding bioactivity. It has been recently revealed that sulfonic groups trigger apatite nucleation in a body environment. Organic–inorganic hybrids consisting of organic polymers and the sulfonic groups are therefore expected to be useful for preparation of novel bone-repairing materials exhibiting flexibility as well as bioactivity. In the present study, organic–inorganic hybrids were prepared from hydroxyethylmethacrylate (HEMA) in the presence of vinylsulfonic acid sodium salt (VSAS) and calcium chloride (CaCl2). The bioactivities of the hybrids were assessed in vitro by examining the apatite formation in simulated body fluid (SBF, Kokubo solution). The hybrids deposited on the apatite after soaking in SBF within 7 days. Tensile strength measurements showed a tendency to increase with increases in VSAS and CaCl2 content. It was assumed that this phenomenon was attributed to the formation of cross-linking in the hybrids
    corecore