763 research outputs found

    Hole Transport in p-Type ZnO

    Full text link
    A two-band model involving the A- and B-valence bands was adopted to analyze the temperature dependent Hall effect measured on N-doped \textit{p}-type ZnO. The hole transport characteristics (mobilities, and effective Hall factor) are calculated using the ``relaxation time approximation'' as a function of temperature. It is shown that the lattice scattering by the acoustic deformation potential is dominant. In the calculation of the scattering rate for ionized impurity mechanism, the activation energy of 100 or 170 meV is used at different compensation ratios between donor and acceptor concentrations. The theoretical Hall mobility at acceptor concentration of 7×10187 \times 10^{18} cm3^3 is about 70 cm2^2V1^{-1}s1^{-1} with the activation energy of 100 meV and the compensation ratio of 0.8 at 300 K. We also found that the compensation ratios conspicuously affected the Hall mobilities.Comment: 5page, 5 figures, accepted for publication in Jpn. J. Appl. Phy

    Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain

    Full text link
    Recently a metallic state was discovered at the interface between insulating oxides, most notably LaAlO3 and SrTiO3. Properties of this two-dimensional electron gas (2DEG) have attracted significant interest due to its potential applications in nanoelectronics. Control over this carrier density and mobility of the 2DEG is essential for applications of these novel systems, and may be achieved by epitaxial strain. However, despite the rich nature of strain effects on oxide materials properties, such as ferroelectricity, magnetism, and superconductivity, the relationship between the strain and electrical properties of the 2DEG at the LaAlO3/SrTiO3 heterointerface remains largely unexplored. Here, we use different lattice constant single crystal substrates to produce LaAlO3/SrTiO3 interfaces with controlled levels of biaxial epitaxial strain. We have found that tensile strained SrTiO3 destroys the conducting 2DEG, while compressively strained SrTiO3 retains the 2DEG, but with a carrier concentration reduced in comparison to the unstrained LaAlO3/SrTiO3 interface. We have also found that the critical LaAlO3 overlayer thickness for 2DEG formation increases with SrTiO3 compressive strain. Our first-principles calculations suggest that a strain-induced electric polarization in the SrTiO3 layer is responsible for this behavior. It is directed away from the interface and hence creates a negative polarization charge opposing that of the polar LaAlO3 layer. This both increases the critical thickness of the LaAlO3 layer, and reduces carrier concentration above the critical thickness, in agreement with our experimental results. Our findings suggest that epitaxial strain can be used to tailor 2DEGs properties of the LaAlO3/SrTiO3 heterointerface

    Photoemission study of TiO2/VO2 interfaces

    Full text link
    We have measured photoemission spectra of two kinds of TiO2_2-capped VO2_2 thin films, namely, that with rutile-type TiO2_2 (r-TiO2_2/VO2_2) and that with amorphous TiO2_2 (a-TiO2_2/VO2_2) capping layers. Below the Metal-insulator transition temperature of the VO2_2 thin films, 300\sim 300 K, metallic states were not observed for the interfaces with TiO2_2, in contrast with the interfaces between the band insulator SrTiO3_3 and the Mott insulator LaTiO3_3 in spite of the fact that both TiO2_2 and SrTiO3_3 are band insulators with d0d^0 electronic configurations and both VO2_2 and LaTiO3_3 are Mott insulators with d1d^1 electronic configurations. We discuss possible origins of this difference and suggest the importance of the polarity discontinuity of the interfaces. Stronger incoherent part was observed in r-TiO2_2/VO2_2 than in a-TiO2_2/VO2_2, suggesting Ti-V atomic diffusion due to the higher deposition temperature for r-TiO2_2/VO2_2.Comment: 5 pages, 6 figure

    Two-dimensional superconductivity at a Mott-Insulator/Band-Insulator interface: LaTiO3/SrTiO3

    Full text link
    Transition metal oxides display a great variety of quantum electronic behaviours where correlations often play an important role. The achievement of high quality epitaxial interfaces involving such materials gives a unique opportunity to engineer artificial structures where new electronic orders take place. One of the most striking result in this area is the recent observation of a two-dimensional electron gas at the interface between a strongly correlated Mott insulator LaTiO3 and a band insulator SrTiO3. The mechanism responsible for such a behaviour is still under debate. In particular, the influence of the nature of the insulator has to be clarified. Here we show that despite the expected electronic correlations, LaTiO3/SrTiO3 heterostructures undergo a superconducting transition at a critical temperature Tc=300 mK. We have found that the superconducting electron gas is confined over a typical thickness of 12 nm. We discuss the electronic properties of this system and review the possible scenarios

    The Effect of Pentoxifylline and Propentofylline(HWA-285) on Post-Ischemic Rat Brain

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付
    corecore