244 research outputs found
H-1-MRS Measured Ectopic Fat in Liver and Muscle in Danish Lean and Obese Children and Adolescents
This cross sectional study aims to investigate the associations between ectopic lipid accumulation in liver and skeletal muscle and biochemical measures, estimates of insulin resistance, anthropometry, and blood pressure in lean and overweight/obese children.Fasting plasma glucose, serum lipids, serum insulin, and expressions of insulin resistance, anthropometry, blood pressure, and magnetic resonance spectroscopy of liver and muscle fat were obtained in 327 Danish children and adolescents aged 8-18 years.In 287 overweight/obese children, the prevalences of hepatic and muscular steatosis were 31% and 68%, respectively, whereas the prevalences in 40 lean children were 3% and 10%, respectively. A multiple regression analysis adjusted for age, sex, body mass index z-score (BMI SDS), and pubertal development showed that the OR of exhibiting dyslipidemia was 4.2 (95%CI: [1.8; 10.2], p = 0.0009) when hepatic steatosis was present. Comparing the simultaneous presence of hepatic and muscular steatosis with no presence of steatosis, the OR of exhibiting dyslipidemia was 5.8 (95%CI: [2.0; 18.6], p = 0.002). No significant associations between muscle fat and dyslipidemia, impaired fasting glucose, or blood pressure were observed. Liver and muscle fat, adjusted for age, sex, BMI SDS, and pubertal development, associated to BMI SDS and glycosylated hemoglobin, while only liver fat associated to visceral and subcutaneous adipose tissue and intramyocellular lipid associated inversely to high density lipoprotein cholesterol.Hepatic steatosis is associated with dyslipidemia and liver and muscle fat depositions are linked to obesity-related metabolic dysfunctions, especially glycosylated hemoglobin, in children and adolescents, which suggest an increased cardiovascular disease risk
Pilot assessment of the sensitivity of the malaria thin film
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Comparison of PfHRP-2/pLDH ELISA, qPCR and microscopy for the detection of Plasmodium events and prediction of sick visits during a malaria vaccine study.
BACKGROUND: Compared to expert malaria microscopy, malaria biomarkers such as Plasmodium falciparum histidine rich protein-2 (PfHRP-2), and PCR provide superior analytical sensitivity and specificity for quantifying malaria parasites infections. This study reports on parasite prevalence, sick visits parasite density and species composition by different diagnostic methods during a phase-I malaria vaccine trial. METHODS: Blood samples for microscopy, PfHRP-2 and Plasmodium lactate dehydrogenase (pLDH) ELISAs and real time quantitative PCR (qPCR) were collected during scheduled (n = 298) or sick visits (n = 38) from 30 adults participating in a 112-day vaccine trial. The four methods were used to assess parasite prevalence, as well as parasite density over a 42-day period for patients with clinical episodes. RESULTS: During scheduled visits, qPCR (39.9%, N = 119) and PfHRP-2 ELISA (36.9%, N = 110) detected higher parasite prevalence than pLDH ELISA (16.8%, N = 50) and all methods were more sensitive than microscopy (13.4%, N = 40). All microscopically detected infections contained P. falciparum, as mono-infections (95%) or with P. malariae (5%). By qPCR, 102/119 infections were speciated. P. falciparum predominated either as monoinfections (71.6%), with P. malariae (8.8%), P. ovale (4.9%) or both (3.9%). P. malariae (6.9%) and P. ovale (1.0%) also occurred as co-infections (2.9%). As expected, higher prevalences were detected during sick visits, with prevalences of 65.8% (qPCR), 60.5% (PfHRP-2 ELISA), 21.1% (pLDH ELISA) and 31.6% (microscopy). PfHRP-2 showed biomass build-up that climaxed (1813±3410 ng/mL SD) at clinical episodes. CONCLUSION: PfHRP-2 ELISA and qPCR may be needed for accurately quantifying the malaria parasite burden. In addition, qPCR improves parasite speciation, whilst PfHRP-2 ELISA is a potential predictor for clinical disease caused by P. falciparum. TRIAL REGISTRATION: ClinicalTrials.gov NCT00666380
Reproducibility of thoracic kyphosis measurements in patients with adolescent idiopathic scoliosis
BACKGROUND: Current surgical treatment for adolescent idiopathic scoliosis (AIS) involves correction in both the coronal and sagittal plane, and thorough assessment of these parameters is essential for evaluation of surgical results. However, various definitions of thoracic kyphosis (TK) have been proposed, and the intra- and inter-rater reproducibility of these measures has not been determined. As such, the purpose of the current study was to determine the intra- and inter-rater reproducibility of several TK measurements used in the assessment of AIS. METHODS: Twenty patients (90% females) surgically treated for AIS with alternate-level pedicle screw fixation were included in the study. Three raters independently evaluated pre- and postoperative standing lateral plain radiographs. For each radiograph, several definitions of TK were measured as well as L1–S1 and nonfixed lumbar lordosis. All variables were measured twice 14 days apart, and a mixed effects model was used to determine the repeatability coefficient (RC), which is a measure of the agreement between repeated measurements. Also, the intra- and inter-rater intra-class correlation coefficient (ICC) was determined as a measure of reliability. RESULTS: Preoperative median Cobb angle was 58° (range 41°–86°), and median surgical curve correction was 68% (range 49–87%). Overall intra-rater RC was highest for T2–T12 and nonfixed TK (11°) and lowest for T4–T12 and T5–T12 (8°). Inter-rater RC was highest for T1–T12, T1-nonfixed, and nonfixed TK (13°) and lowest for T5–T12 (9°). Agreement varied substantially between pre- and postoperative radiographs. Inter-rater ICC was highest for T4–T12 (0.92; 95% CI 0.88–0.95) and T5–T12 (0.92; 95% CI 0.88–0.95) and lowest for T1-nonfixed (0.80; 95% CI 0.72–0.88). CONCLUSIONS: Considerable variation for all TK measurements was noted. Intra- and inter-rater reproducibility was best for T4–T12 and T5–T12. Future studies should consider adopting a relevant minimum difference as a limit for true change in TK. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13013-017-0112-4) contains supplementary material, which is available to authorized users
Testing the sensitivity and specificity of the fluorescence microscope (Cyscope®) for malaria diagnosis
<p>Abstract</p> <p>Background</p> <p>Early diagnosis and treatment of malaria are necessary components in the control of malaria. The gold standard light microscopy technique has high sensitivity, but is a relatively time-consuming procedure especially during epidemics and in areas of high endemicity. This study attempted to test the sensitivity and specificity of a new diagnostic tool - the Cyscope<sup>® </sup>fluorescence microscope, which is based on the use of Plasmodium nucleic acid-specific fluorescent dyes to facilitate detection of the parasites even in low parasitaemia conditions due to the contrast with the background.</p> <p>Methods</p> <p>In this study, 293 febrile patients above the age of 18 years attending the malaria treatment centre in Sinnar State (Sudan) were interviewed using a structured questionnaire. Finger-prick blood samples were also collected from the participants to be tested for malaria using the hospital's microscope, the reference laboratory microscope, as well as the Cyscope<sup>® </sup>microscope. The results of the investigations were then used to calculate the sensitivity, specificity, and positive and negative predictive values of the Cyscope<sup>® </sup>microscope in reference to gold standard light microscopy.</p> <p>Results</p> <p>The sensitivity was found to be 98.2% (95% CI: 90.6%-100%); specificity = 98.3% (95% CI: 95.7% - 99.5%); positive predictive value = 93.3% (95% CI: 83.8% - 98.2%); and negative predictive value = 99.6% (95% CI: 97.6% - 100%).</p> <p>Conclusions</p> <p>In conclusion, the Cyscope<sup>® </sup>microscope was found to be sensitive, specific and provide rapid, reliable results in a matter of less than 10 minutes. The Cyscope<sup>® </sup>microscope should be considered as a viable, cheaper and time-saving option for malaria diagnosis, especially in areas where <it>Plasmodium falciparum </it>is the predominant parasite.</p
A review of microscopy‑based evidence for the association of Propionibacterium acnes biofilms in degenerative disc disease and other diseased human tissue
Malaria vaccine efficacy: the difficulty of detecting and diagnosing malaria
New sources of funding have revitalized efforts to control malaria. An effective vaccine would be a tremendous asset in the fight against this devastating disease and increasing financial and scientific resources are being invested to develop one. A few candidates have been tested in Phase I and II clinical trials, and several others are poised to begin trials soon. Some studies have been promising, and others disappointing. It is difficult to compare the results of these clinical trials; even independent trials of the same vaccine give highly discrepant results. One major obstacle in evaluating malaria vaccines is the difficulty of diagnosing clinical malaria. This analysis evaluates the impact of diagnostic error, particularly that introduced by microscopy, on the outcome of efficacy trials of malaria vaccines and make recommendations for improving future trials
Sustainable development of a GCP-compliant clinical trials platform in Africa: the Malaria Clinical Trials Alliance perspective
BACKGROUND: The Malaria Clinical Trials Alliance (MCTA), a programme of INDEPTH network of demographic surveillance centres, was launched in 2006 with two broad objectives: to facilitate the timely development of a network of centres in Africa with the capacity to conduct clinical trials of malaria vaccines and drugs under conditions of good clinical practice (GCP); and to support, strengthen and mentor the centres in the network to facilitate their progression towards self-sustaining clinical research centres. CASE DESCRIPTION: Sixteen research centres in 10 African malaria-endemic countries were selected that were already working with the Malaria Vaccine Initiative (MVI) or the Medicines for Malaria Venture (MMV). All centres were visited to assess their requirements for research capacity development through infrastructure strengthening and training. Support provided by MCTA included: laboratory and facility refurbishment; workshops on GCP, malaria diagnosis, strategic management and media training; and training to support staff to undertake accreditation examinations of the Association of Clinical Research Professionals (ACRP). Short attachments to other network centres were also supported to facilitate sharing practices within the Alliance. MCTA also played a key role in the creation of the African Media & Malaria Research Network (AMMREN), which aims to promote interaction between researchers and the media for appropriate publicity and media reporting of research and developments on malaria, including drug and vaccine trials. CONCLUSION: In three years, MCTA strengthened 13 centres to perform GCP-compliant drug and vaccine trials, including 11 centres that form the backbone of a large phase III malaria vaccine trial. MCTA activities have demonstrated that centres can be brought up to GCP compliance on this time scale, but the costs are substantial and there is a need for further support of other centres to meet the growing demand for clinical trial capacity. The MCTA experience also indicates that capacity development in clinical trials is best carried out in the context of preparation for specific trials. In this regard MCTA centres involved in the phase III malaria vaccine trial were, on average, more successful at consolidating the training and infrastructure support than those centres focussing only on drug trials
Performance and usefulness of the Hexagon rapid diagnostic test in children with asymptomatic malaria living in the Mount Cameroon region
<p>Abstract</p> <p>Background</p> <p>Rapid and correct diagnosis of malaria is considered an important strategy in the control of the disease. However, it remains to be determined how well these tests can perform in those who harbour the parasite, but are asymptomatic, so that rapid diagnostic tests (RDTs) could be used in rapid mass surveillance in malaria control programmes.</p> <p>Methods</p> <p>Microscopic and immunochromatographic diagnosis of malaria were performed on blood samples from the hyperendemic Mount Cameroon region. Thin and thick blood films were stained with Giemsa and examined under light microscopy for malaria parasites. The RDT was performed on the blood samples for the detection of <it>Plasmodium </it>species. In addition, the performance characteristics of the test were determined using microscopy as gold standard.</p> <p>Results</p> <p>Results revealed 40.32% to be positive for microscopy and 34.41% to be positive for the RDT. Parasites were detected in a greater proportion of samples as the parasite density increase. <it>Plasmodium falciparum </it>was the predominant <it>Plasmodium </it>species detected in the study population either by microscopy or by the RDT. Overall, the test recorded a sensitivity and specificity of 85.33% and 95.05% respectively, and an accuracy of 91.40%. The sensitivity and specificity of the RDT increased as parasite densities increased.</p> <p>Conclusion</p> <p>The Hexagon Malaria Combi™ test showed a high sensitivity and specificity in diagnosing malaria in asymptomatic subjects and so could be suitable for use in mass surveillance programmes for the management and control of malaria.</p
- …
