271 research outputs found
Measurement of energy muons in EAS at energy region larger thean 10(17) eV
A measurement of low energy muons in extensive air showers (EAS) (threshold energies are 0.25, 0.5, 0.75 and 1.38 GeV) was carried out. The density under the concrete shielding equivalent to 0.25 GeV at core distance less than 500 m and 0.5 GeV less than 150 m suffers contamination of electromagnetic components. Therefore the thickness of concrete shielding for muon detectors for the giant air shower array is determined to be 0.5 GeV equivalence. Effects of photoproduced muons are found to be negligible in the examined ranges of shower sizes and core distances. The fluctuation of the muon density in 90 sq m is at most 25% between 200 m and 600 m from the core around 10 to the 17th power eV
Akeno 20 km (2) air shower array (Akeno Branch)
As the first stage of the future huge array, the Akeno air shower array was expanded to about 20 sq. km. by adding 19 scintillation detectors of 2.25 sq m area outside the present 1 sq. km. Akeno array with a new data collection system. These detectors are spaced about 1km from each other and connected by two optical fiber cables. This array has been in partial operation from 8th, Sep. 1984 and full operation from 20th, Dec. 1984. 20 sq m muon stations are planned to be set with 2km separation and one of them is now under construction. The origin of the highest energy cosmic rays is studied
On a possible photon origin of the most-energetic AGASA events
In this work the ultra high energy cosmic ray events recorded by the AGASA
experiment are analysed. With detailed simulations of the extensive air showers
initiated by photons, the probabilities are determined of the photonic origin
of the 6 AGASA events for which the muon densities were measured and the
reconstructed energies exceeded 10^20 eV. On this basis a new, preliminary
upper limit on the photon fraction in cosmic rays above 10^20 eV is derived and
compared to the predictions of exemplary top-down cosmic-ray origin models.Comment: 3 pages, 1 figure, 2 tables; presented at XIII ISVHECRI, Pylos,
Greec
Small-scale anisotropy of cosmic rays above 10^19eV observed with the Akeno Giant Air Shower Array
With the Akeno Giant Air Shower Array (AGASA), 581 cosmic rays above 10^19eV,
47 above 4 x 10^19eV, and 7 above 10^20eV are observed until August 1998.
Arrival direction distribution of these extremely high energy cosmic rays has
been studied. While no significant large-scale anisotropy is found on the
celestial sphere, some interesting clusters of cosmic rays are observed. Above
4 x 10^19eV, there are one triplet and three doublets within separation angle
of 2.5^o and the probability of observing these clusters by a chance
coincidence under an isotropic distribution is smaller than 1 %. Especially the
triplet is observed against expected 0.05 events. The cos(\theta_GC)
distribution expected from the Dark Matter Halo model fits the data as well as
an isotropic distribution above 2 x 10^19eV and 4 x 10^19eV, but is a poorer
fit than isotropy above 10^19eV. Arrival direction distribution of seven
10^20eV cosmic rays is consistent with that of lower energy cosmic rays and is
uniform. Three of seven are members of doublets above about 4 x 10^19eV.Comment: 40 pages, 12 figure, AASTeX *** Authors found a typo on Table 2 --
Energy of event 94/07/06 **
The Anisotropy of Cosmic Ray Arrival Direction around 10^18eV
Anisotropy in the arrival directions of cosmic rays around 10^{18}eV is
studied using data from the Akeno 20 km^2 array and the Akeno Giant Air Shower
Array (AGASA), using a total of about 216,000 showers observed over 15 years
above 10^{17}eV. In the first harmonic analysis, we have found significant
anisotropy of 4 % around 10^{18}eV, corresponding to a chance
probability of after taking the number of independent trials
into account. With two dimensional analysis in right ascension and declination,
this anisotropy is interpreted as an excess of showers near the directions of
the Galactic Center and the Cygnus region. This is a clear evidence for the
existence of the galactic cosmic ray up to the energy of 10^{18}eV. Primary
particle which contribute this anisotropy may be proton or neutron.Comment: 4pages, three figures, to appear in Procedings of 26th ICRC(Salt Lake
City
Extension of the Cosmic-Ray Energy Spectrum Beyond the Predicted Greisen-Zatsepin-Kuz'min Cutoff
The cosmic-ray energy spectrum above 10^{18.5} eV is reported using the
updated data set of the Akeno Giant Air Shower Array (AGASA) from February 1990
to October 1997. The energy spectrum extends beyond 10^{20} eV and the energy
gap between the highest energy event and the others is being filled up with
recently observed events. The spectral shape suggests the absence of the 2.7 K
cutoff in the energy spectrum or a possible presence of a new component beyond
the 2.7 K cutoff.Comment: to be published in PRL, 3 figures, REVTEX forma
- …