34 research outputs found

    Effect of soy protein on the muscle in human

    Get PDF
    Background : In recent years, the number of bedridden people is rapidly increasing due to aging or lack of exercise in Japan. This problem is becoming more serious, since there is no countermeasure against it. In the present study, we designed to investigate whether dietary proteins, especially soy, had beneficial effects on skeletal muscle in 59 volunteers with various physical activities. Methods : We subjected 59 volunteers with various physical activities to meal intervention examination. Persons with low and high physical activities were divided into two dietary groups, the casein diet group and the soy diet group. They ate daily meals supplemented with 7.8 g of powdered casein or soy protein isolate every day for 30 days. Bedridden patients in hospitals were further divided into three dietary groups : the no supplementation diet group, the casein diet group and the soy diet group. They were also subjected to a blood test, a urinalysis, magnetic resonance imaging analysis and muscle strength test of the knee before and after the meal intervention study. Results : Thirty-day soy protein supplementation significantly increased skeletal muscle volume in participants with low physical activity, compared with 30-day casein protein supplementation. Both casein and soy protein supplementation increased the volume of quadriceps femoris muscle in bedridden patients. Consistently, soy protein significantly increased their extension power of the knee, compared with casein protein. Although casein protein increased skeletal muscle volume more than soy protein in bedridden patients, their muscle strength changes by soy protein supplementation were bigger than those by casein protein supplementation. Conclusions : The supplementation of soy protein would be one of the effective foods which prevent the skeletal muscle atrophy caused by immobilization or unloading

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Nardilysin prevents amyloid plaque formation by enhancing α-secretase activity in an Alzheimer's disease mouse model.

    Get PDF
    Amyloid beta (Aβ) peptide, the main component of senile plaques in patients with Alzheimer's disease (AD), is derived from proteolytic cleavage of amyloid precursor protein (APP) by β- and γ-secretases. Alpha-cleavage of APP by α-secretase has a potential to preclude the generation of Aβ because it occurs within the Aβ domain. We previously reported that a metalloendopeptidase, nardilysin (N-arginine dibasic convertase; NRDc) enhances α-cleavage of APP, which results in the decreased generation of Aβ in vitro. To clarify the in vivo role of NRDc in AD, we intercrossed transgenic mice expressing NRDc in the forebrain with an AD mouse model. Here we demonstrate that the neuron-specific overexpression of NRDc prevents Aβ deposition in the AD mouse model. The activity of α-secretase in the mouse brain was enhanced by the overexpression of NRDc, and was reduced by the deletion of NRDc. However, reactive gliosis adjacent to the Aβ plaques, one of the pathological features of AD, was not affected by the overexpression of NRDc. Taken together, our results indicate that NRDc controls Aβ formation through the regulation of α-secretase

    Critical roles of nardilysin in the maintenance of body temperature homoeostasis.

    Get PDF
    「体温恒常性維持のメカニズムの解明」に成功. 京都大学プレスリリース. 2014-02-04.Body temperature homoeostasis in mammals is governed centrally through the regulation of shivering and non-shivering thermogenesis and cutaneous vasomotion. Non-shivering thermogenesis in brown adipose tissue (BAT) is mediated by sympathetic activation, followed by PGC-1α induction, which drives UCP1. Here we identify nardilysin (Nrd1 and NRDc) as a critical regulator of body temperature homoeostasis. Nrd1(-/-) mice show increased energy expenditure owing to enhanced BAT thermogenesis and hyperactivity. Despite these findings, Nrd1(-/-) mice show hypothermia and cold intolerance that are attributed to the lowered set point of body temperature, poor insulation and impaired cold-induced thermogenesis. Induction of β3-adrenergic receptor, PGC-1α and UCP1 in response to cold is severely impaired in the absence of NRDc. At the molecular level, NRDc and PGC-1α interact and co-localize at the UCP1 enhancer, where NRDc represses PGC-1α activity. These findings reveal a novel nuclear function of NRDc and provide important insights into the mechanism of thermoregulation

    CO2-cAMP-Responsive cis-Elements Targeted by a Transcription Factor with CREB/ATF-Like Basic Zipper Domain in the Marine Diatom Phaeodactylum tricornutum1[W][OA]

    No full text
    Expression controls of the carbon acquisition system in marine diatoms in response to environmental factors are an essential issue to understand the changes in marine primary productivity. A pyrenoidal β-carbonic anhydrase, PtCA1, is one of the most important candidates to investigate the control mechanisms of the CO2 acquisition system in the marine diatom Phaeodactylum tricornutum. A detailed functional assay was carried out on the putative core regulatory region of the ptca1 promoter using a β-glucuronidase reporter in P. tricornutum cells under changing CO2 conditions. A set of loss-of-function assays led to the identification of three CO2-responsive elements, TGACGT, ACGTCA, and TGACGC, at a region −86 to −42 relative to the transcription start site. Treatment with a cyclic (c)AMP analog, dibutyryl cAMP, revealed these three elements to be under the control of cAMP; thus, we designated them, from 5′ to 3′, as CO2-cAMP-Responsive Element1 (CCRE1), CCRE2, and CCRE3. Because the sequence TGACGT is known to be a typical target of human Activating Transcription Factor6 (ATF6), we searched for genes containing a basic zipper (bZIP) region homologous to that of ATF6 in the genome of P. tricornutum. Gel-shift assays using CCRE pentamers as labeled probes showed that at least one candidate of bZIP proteins, PtbZIP11, bound specifically to CCREs. A series of gain-of-function assays with CCREs fused to a minimal promoter strongly suggested that the alternative combination of CCRE1/2 or CCRE2/3 at proper distances from the minimal promoter is required as a potential target of PtbZIP11 for an effective CO2 response of the ptca1 gene
    corecore