62 research outputs found

    Regulation of Mitochondrial Dynamics and Neurodegenerative Diseases

    Get PDF
    Mitochondria are important cellular organelles in most metabolic processes and have a highly dynamic nature, undergoing frequent fission and fusion. The dynamic balance between fission and fusion plays critical roles in mitochondrial functions. In recent studies, several large GTPases have been identified as key molecular factors in mitochondrial fission and fusion. Moreover, the posttranslational modifications of these large GTPases, including phosphorylation, ubiquitination and SUMOylation, have been shown to be involved in the regulation of mitochondrial dynamics. Neurons are particularly sensitive and vulnerable to any abnormalities in mitochondrial dynamics, due to their large energy demand and long extended processes. Emerging evidences have thus indicated a strong linkage between mitochondria and neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. In this review, we will describe the regulation of mitochondrial dynamics and its role in neurodegenerative diseases

    Fabrication of Electroluminesecent Thin Films Doped with Rare-Earth Ions by Evaporation Method

    Get PDF
    The fabrication conditions of the electroluminescent ZnS:TbF₃, ZnS:ErF₃, and ZnS;NdF₃ thin films have been investigated. The effects of pre-heating upon the electroluminescent properties, and the relationship between crucible temperature and deposition rate, have been studied. The optimum fabrication conditions of the strong electroluminescent films have been found to be as fol1ows; crucible temperature for ZnS of 760~780℃, crucible temperature for rare-earth fluorides of 780~820℃, and the deposition rate of 300Å/min. These conditions were independent of the rare-earth ions doped. The EL emission spectra of the films have been related to known energy level schemes of doped rare-earth ions. The external power efficiency of 5×10⁶ have been obtained

    Ca2+-independent syntaxin binding to the C2B effector region of synaptotagmin

    Get PDF
    Although synaptotagmin I, which is a calcium (Ca2+)-binding synaptic vesicle protein, may trigger soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated synaptic vesicle exocytosis, the mechanisms underlying the interaction between these proteins remain controversial, especially with respect to the identity of the protein(s) in the SNARE complex that bind(s) to synaptotagmin and whether Ca2+ is required for their highly effective binding. To address these questions, native proteins were solubilized, immunoprecipitated from rat brain extracts, and analyzed by immunoblotting. SNARE complexes comprising syntaxin 1, 25-kDa synaptosomal-associated protein (SNAP-25), and synaptobrevin 2 were coprecipitzted with synaptotagmin I in the presence of ethylene glycol tetraacetic acid. The amount of cop recipitated proteins was significantly unaltered by the addition of Ca2+ to the brain extract. To identify the component of the SNARE complex that bound to synaptotagmin, SNARE was coexpressed with synaptotagmin in HEK293 cells and immunoprecipitated. Syntaxin, but not SNAP-25 and synaptobrevin, bound to synaptotagmin in a Ca2+-independent manner, and the binding was abolished in the presence of 1 M NaCl. Synaptotagmin contains 2 Ca2+-binding domains (C(2)A, C2B). Mutating the positively charged lysine residues in the putative effector-binding region of the C2B domain, which are critical for transmitter release, markedly inhibited synaptotagmin-syntaxin binding, while similar mutations in the C(2)A domain had no effect on binding. Synaptotagmin-syntaxin binding was reduced by mutating multiple negatively charged glutamate residues in the amino-terminal half of the syntaxin SNARE motif. These results indicate that synaptotagmin I binds to syntaxin 1 electrostatically through its C2B domain effector region in a Ca2+-independent fashion, providing biochemical evidence that synaptotagmin I binds SNARE complexes before Ca2+ influx into presynaptic nerve terminals

    Utility of Combined Use of Transabdominal Ultrasonography and Fecal Immunochemical Test Examinations in Ulcerative Colitis

    Get PDF
    This study examined the utility of the combined use of transabdominal ultrasonography (TUS) and fecal immunochemical testing (FIT) to detect mucosal inflammation, vis-a-vis the Mayo endoscopic subscore (MES), in ulcerative colitis (UC). Sixty-three UC patients who underwent TUS and FIT were retrospectively enrolled. For TUS, the colon was divided into five segments, and the bowel wall thickness was measured and evaluated. The accuracy of FIT (> 100 ng/ml) in detecting mucosal inflammation (MES>0) was 0.93, whereas that of TUS (BWT>2 mm) in each segment was 0.84-0.97. The combined use of TUS and FIT may be helpful in noninvasive treatment strategies

    Inhalation of 10% carbon dioxide rapidly terminates Scn1a mutation-related hyperthermia-induced seizures

    Get PDF
    The aim of this study was to assess the anticonvulsant effect of carbon dioxide (CO2) on Scn1a mutation-related febrile seizures. We examined physiological changes in the blood gas levels after the induction of hyperthermia-induced seizures (HISs), which were associated with the Scn1a missense mutation. We determined the efficacy of inhalation of 5% or 10% CO2 to treat HISs. HISs were evoked in Scn1a mutant and wild-type (WT) rats by hot water baths. To determine the anticonvulsant effect of CO2 inhalation, rats were placed in a chamber filled with air or mixed gas containing 5% CO2 or 10% CO2 for 3 min, immediately after the induction of HISs. We also analyzed the blood gas levels at the end of inhalation of CO2. Hot water bathing induced a significant reduction in the partial pressure of CO2 (pCO2) and respiratory alkalosis in the WT and Scn1a mutant rats. HISs were evoked in 100% of the Scn1a mutant rats within 5 min, but in none of the WT rats. The Scn1a mutant rats demonstrated a higher HISs susceptibility associated with respiratory alkalosis than the WT rats. Inhalation of 10% CO2 shortened the seizure duration from 62.6±12.1 s to 15.5±1.0 s. Blood gas analysis after the inhalation of 10% CO2 demonstrated an elevated pCO2 level and respiratory acidosis. Inhalation of 10% CO2 demonstrated a potent and fast-acting anticonvulsant effect against HISs

    CACNA1A variants may modify the epileptic phenotype of Dravet syndrome

    Get PDF
    Dravet syndrome is an intractable epileptic syndrome beginning in the first year of life. De novo mutations of SCN1A, which encode the Na(v)1.1 neuronal voltage-gated sodium channel, are considered the major cause of Dravet syndrome. In this study, we investigated genetic modifiers of this syndrome. We performed a mutational analysis of all coding exons of CACNA1A in 48 subjects with Dravet syndrome. To assess the effects of CACNA1A variants on the epileptic phenotypes of Dravet syndrome, we compared clinical features in two genotype groups: 1) subjects harboring SCN1A mutations but no CACNA1A variants (n=20) and 2) subjects with SCN1A mutations plus CACNA1A variants (n=20). CACNA1A variants detected in patients were studied using heterologous expression of recombinant human Ca(v)2.1 in HEK 293 cells and whole-cell patch-clamp recording. Nine CACNA1A variants, including six novel ones, were detected in 21 of the 48 subjects (43.8%). Based on the incidence of variants in healthy controls, most of the variants seemed to be common polymorphisms. However, the subjects harboring SCN1A mutations and CACNA1A variants had absence seizures more frequently than the patients with only SCN1A mutations (8/20 vs. 0/20, p=0.002). Moreover, the former group of subjects exhibited earlier onset of seizures and more frequent prolonged seizures before one year of age, compared to the latter group of subjects. The electrophysiological properties of four of the five novel Ca(v)2.1 variants exhibited biophysical changes consistent with gain-of-function. We conclude that CACNA1A variants in some persons with Dravet syndrome may modify the epileptic phenotypes

    Rasmussen encephalitis associated with SCN1A mutation

    Get PDF
    Mutations in the SCN 1 A gene, encoding the neuronal voltage-gated sodium channel alpha1 subunit, cause SMEI, GEFS+, and related epileptic syndromes. We herein report the R1575C-SCN 1 A mutation identified in a patient with Rasmussen encephalitis. R1575C were constructed in a recombinant human SCN 1 A and then heterologously expressed in HEK293 cells along with the human beta1 and beta2 sodium channel accessory subunits. Whole-cell patch-clamp recording was used to define biophysical properties. The R1575C channels exhibited increased channel availability and an increased persistent sodium current in comparison to the wild-type. These defects of electrophysiological properties can result in neuronal hyperexitability. The seizure susceptibility allele may influence the pathogenesis of Rasmussen encephalitis in this case
    corecore