蒸着による ZnS:希土類エレクトロルミネッセンス薄膜の作製

小 林 洋 志*・大 森 秀 樹*・田 中 省 作*・笹 倉 博*

(1973年10月1日受理)

Fabrication of Electroluminesecent Thin Films Doped with Rare-Earth Ions by Evaporation Method

Hiroshi Kobayashi, Hideki Ohmori, Shosaku Tanaka and Hiroshi Sasakura

(Received, October, 1. 1973)

Abstract

The fabrication conditions of the electroluminescent $ZnS:TbF_3$, $ZnS:ErF_3$, and $ZnS:NdF_3$ thin films have been investigated. The effects of pre-heating upon the electroluminescent properties, and the relationship between crucible temperature and deposition rate, have been studied.

The optimum fabrication conditions of the strong electroluminescent films have been found to be as follows; crucible temperature for ZnS of $760 \sim 780^{\circ}$, crucible temperature for rare-earth fluorides of $780 \sim 820^{\circ}$, and the deposition rate of 300Å/min. These conditions were independent of the rare-earth ions doped.

The EL emission spectra of the films have been related to known energy level schemes of doped rare-earth ions. The external power efficiency of 5×10^6 have been obtained.

1 まえがき

ZnS に希土類イオン (Ln³⁺) を添加することによっ て得られる 薄膜は, 10⁶ V/cm |程 度の 高い電界のもと でエレクトロルミネッセンス (EL) を示すり。 この薄 膜素子は,発光中心となる希土類イオン固有の発光スペ クトルを示し,そのため,さまざまな発光色をもつ EL 素子が得られる²)。

この薄膜素子の作製には,次のような特徴をもつ, ZnS および希土類フッ化物(LnF₃)の同時蒸着法が用いられる。^{1,2)}一般にZnS中の希土類イオンの固溶度は低い³⁾が,同時蒸着によるとこの欠点が取り除かれ,高 濃度の希土類イオンの添加が可能になる。ZnS,希土類フッ化物を独立した2個の蒸発源より蒸着するため,任 意の濃度のものが得られる。さらに発光中心となる希土 類イオンを ZnS 中に良好に分散させて添加することが できるため、発光効率を高くすることができる。

これまでこの同時蒸着による素子の製作条件が明らか にされていないので、本論文では、良好なエレクトロミ ネッセンスを示す素子の作 製法 について 報告する。 TbF_3 , ErF_3 , NdF_3 の3種類の希土類フッ化物につ いて、素子を再現性よく作製するための製作条件を研究 した。製作した素子は、良好なエレクトロルミネッセン スを示し、その発光スペクトル、発光効率等が測定され た。

2 実 験

2.1 蒸着装置

Fig. 1 に素子を製作するのに用いた 蒸着装置を示 す。ZnS 粉末は、直径 10mmの円筒型の石英るつぼに、

* 電子工学科 Department of Electronics

Fig. 1 Evaporation system.

また希土類フッ化物は、同様の石英るつぼに挿入された 白金るつぼに、それぞれ入れられ、タングステン・コイ ルで加熱される。基板背面に、基板加熱用ヒーターがセ ットされる。基板面は蒸発源に垂直に、蒸発源から30cm 程度の位置に取り付けられる。蒸発源と基板との間に は、円筒状のガラス・シールドおよびシャッターが置か れる。基板の近く基板と同一平面上に、膜厚、堆積速度 を測定するためのクリスタル・センサが取り付けられ る。蒸着中の膜厚、蒸着速度のほかに、ZnS および希土 類フッ化物を入れたるつぼの温度、基板の温度が、アル メル・クロメル熱電対を使って測定される。また、ベル ジャ内の真空度が、電離真空計により測定される。

2.2 素子の作製

Fig.2に我々が製作した, Ta→Ta₂ O₅ → ZnS: Ln³⁺ -Au の4層EL素子の構造と, その典型的な厚さを示 す。

Fig. 2 Structure of EL devices.

 $Ta_2 O_5$ 層は, 高電界における ZnS 層の絶縁破壊を 防ぐために用いられる⁴⁾。この層はガラス上にスパッタ された β —Ta 膜⁵⁾の一部を陽極酸化することによって 作られる⁶⁾。ZnS:Ln³⁺層および Au はこの Ta₂ O₅層 の上へ次のような過程で蒸着される。

i) 蒸着される基板表面すなわち Ta₂O₆ 表面は,あら かじめ蒸留水,アセトンによってくり返し洗浄される。

ii) Fig. 1 に示すように、蒸着装置に基板を取り付けた後、前処理として次のような熱処理を行なう。 1×10^{-5} torr 程度の真空中で、基板を背面のヒーターにより、 200° 程度に約60分間加熱し、そのまま $10\sim20$ 時間、 $1 \times 10^{-4} \sim 1 \times 10^{-3}$ torr の真空中に放置冷却する。

iii) ベルジャ 内 を 1×10^{-5} torr 程 度 に 排 気 し, ZnS,希土類フッ化物を入れたるつぼのヒーターを加熱 し,徐々に温度を上げて試料内のガス出しを行なう。

iV) るつぼ温度, 基板温度, 蒸着速度, 堆積膜厚を 監視しながら,必要な膜厚になるまで蒸着を行なう。基 板自身は蒸着中, 特に加熱又は冷却されないが, 基板温 度は蒸発源よりの幅射熱で80℃~100℃になる。

V) ZnS,希土類フッ化物の蒸着が終った後, 半透明 電極として約100Åの厚さのAuを蒸着する。

3 結果の検討

3.1 前処理の影響

前処理の影響を明らかにするため、2.2 で述べた熱処 理を行なった基板と、蒸留水、アセトンによる洗浄のみ の基板について同一条件で蒸着を行ない、両者を比較し た。前処理を行なったものは、2nS 膜が、きわめて一 様に蒸着され、均一な干渉色を示すのに対し、前処理を 施さなかったものは、場所によって異なる膜厚分布をも ち、干渉色に色むらが現われた。前処理を行なった素子 は、行なわなかったものにくらべ、一般に安定な発光を 示す傾向にある。発光特性は、素子の $Ta_2O_5 - 2nS$ 間 の界面の状態に大きく依存すると考えられるため¹⁰、前 処理を行なうことによって Ta_2O_5 表面付近の水分など の残留分子が除かれて、 $Ta_2O_5 - 2nS$ 界面に与える悪 影響を少なくした結果であろうと考えられる。以上の結 果より、良好な素子を作製するためには、このような前 処理はきわめて有効な手段と考えられる。

3.2 蒸着条件

3.2.1 真空度

蒸着開始時のベルジャ内の真空度の影響を調べるため

Fig. 3 The variations of crucible temperature, pressure and film thickness during evaporation,

に、真空度を、 $5 \times 10^{-5} \sim 1 \times 10^{-6}$ torr まで変化させ て素子を作製した。蒸着速度、膜厚、発光特性等いずれ に関してもこの真空度によると思われる目立った変化は 認められなかった。したがって、蒸着開始時の真空度は 1×10^{-5} torr 程度で特に問題はないと思われる。Fig. 3に蒸着時のベルジャ内の真空度の変化を示す。ヒータ ーの予熱の段階で 5×10^{-5} torr までの真空度の急激な 低下が見られるが、これはるつぼの加熱によって、るつ ぼ、ヒーターあるいは試料内に含有された高い蒸気圧を もつ水分等が蒸発するためと考えられる。

3.2.2 るつぼ温度と ZnS の蒸着速度

蒸着中の ZnS 膜厚の変化の一例を、ZnS 蒸着用るつ ぼ温度を 780℃ で一定にして 蒸着した 場合 について Fig.3 に示す。この結果より、ZnS 蒸着用のるつぼ温 度を一定にした場合、一定の蒸着速度が得られ、膜厚は蒸 着時間に比例して増加して行くことが明らかになった。 るつぼに入れる ZnS 粉末の量を 350mg としたときの、 ZnS 蒸着用るつぼの 温度と 蒸着速度の 関係を Fig. 4 に示す。蒸着前のZnS量を一定にすると、るつぼ温度を かえることにより、ある程度任意に蒸着速度を制御でき

ることが明らかになった。Fig.4 での実験値のばらつき は,熱電対による温度測定時の誤差によるものと思われ る。蒸着速度を 30Å/min.から /300Åmin.まで変 化さ せて蒸着した結果,ZnS の蒸着速度が大きい程,素子は 明るい発光を示すという傾向が見られた。しかし,ZnS の蒸着速度は得られた素子内の希土類イオン濃度に大き く関係すると考えられるので、この傾向は果して ZnS の蒸着速度のみによるものか否かは明らかでない。こゝ で蒸着速度 30Å/min.および 300Å/min.は、本実験に おいて再現性高く安定に蒸着できる下限および上限であ って、この値は蒸着に用いられる試料の量、るつぼおよ びヒーターの材質、形状等によって定まる。

3.2.3 希土類フッ化物のるつぼ温度と希土類イオン 濃度

ZnS 中の希土類イオン濃度は、ZnS の 蒸着速度 およ び希土類フッ化物の蒸着速度の比に大きく依存するもの と考えられる。ZnS の場合のように、るつぼ温度と希 土類フッ化物の蒸着速度の関係が明らかになれば、るつ ぼの温度により、希土類イオン濃度を制御することがで きると考えられる。しかし希土類フッ化物の蒸発は微量 であるため、るつぼ温度と蒸発量の関係は明らかにでき なかった。そのため、希土類フッ化物が安定に蒸発する 温度を見出し、これを一定として蒸着を行なった。 るつ ぼ温度と希土類フッ化物の量および ZnS の蒸着速度が 一定であれば、同一の希土類イオン濃度をもつ素子が得 られることになる。ZnS の蒸着速度が 300Å/min.のと き, 希土類フッ化物の量を20~30mg, るつぼ温度を800℃ 程度として蒸着した時、最も明るい発光を示す素子が得 られた。この様な条件で同時蒸着した素子の ZnS 中の 希土類イオン濃度は,螢光X線分析の結果, 0.5~2.0at・ %であった。

3.3 ZnS:Ln³⁺ 薄膜素子の EL 発光

3種の希土類フッ化物、TbF₃、ErF₃、NdF₃を用 いて EL 素子を作製した。Table 1に、素子 作 製 時 の、ZnS および希土類フッ化物の 量、るつぼ 温度、蒸 着速度、膜厚と、得られた素子から観察された発光色を 示す。TbF₃、ErF₃、NdF₃のそれぞれについてほぼ 同様の蒸着条件で良好な素子が得られ、希土類フッ化物 の違いによる蒸着条件の相違は、特に認められなかった。 3.2.3 で述べたがこのような条件で作製した素子の ZnS 中の希土類イオン濃度は 0.5~2.0at %であった。外部発光効率としては、3種の素子について、本実験では 5×10^{-6} 程度のものが得られた。

この素子は、発光中心として希土類イオンをもつた め、そのエレクトロルミネッセンスは希土類イオンの不 完全殻である4f殻電子によって生じる。したがって、 得られた素子の発光スペクトルは、4f電子準位間の遷 移による鋭いスペクトルとなる²⁾。Fig. 5(a)(b)(c) に、ZnS:Tb³⁺、ZnS:Er³⁺、およびZnS:Nd³⁺の発光 スペクトルを示す。ZnS:Tb³⁺をもつ素子は、⁵D₄→ ⁷F₅なる遷移によって、5425Åに強いピークが現われ、 その発光色は緑色となる。ZnS:Er³⁺を発光層とする素 子は²H_{11/2}→⁴I_{15/2}によって5245Åに強いピークを有 し、発光色は緑色となる。ZnS:Nd³⁺は、可視領域にお いては、⁴G_{5/2}→⁴I_{9/2}による 6000Åのピークのために弱 い橙赤色の発光を示す。この素子はさらに赤外領域に、 ⁴F_{3/2}→⁴I_{9/2}の遷移によって生じる 8900Åの強いピー クを有する。

4.むすび

良好なエレクトロルミネッセンスを示す蒸着条件が、 ZnS: TbF₃, ZnS: ErF₃, ZnS: NdF₃ について見 出された。

i) 前処理としての蒸着前の熱処理が良好な素子の作 製にきわめて効果的である。

ii) ZnS の堆積速度の増加は、るつぼ温度が550~80 0℃の範囲で温度の増加にほぼ比例する。

iii) 本実験では、ZnSの蒸着速度 300Å/min.で、最 も強い発光を示す素子が得られた。

iV) TbF₃, ErF₃, NdF₃ についてほぼ同一の蒸着 条件で良好な素子が得られた。

ZnS:X	Weight (mg)		Evaporation temperature (°C)		Deposition rate	Approximate thickness	Emission color
	ZnS	Х	ZnS	X	(Å/min.)	(Å)	
\mathbf{TbF}_3	350	35	780	800	300	2000	Green
ErF ₃	300	20	760	780	300	1500	Green
NdF₃	300	25	780	820	300	1500	Orange —red

Table 1 Device description.

小林洋志・大森秀樹・田中省作・笹倉 博:蒸着による ZnS:希土類エレクトロルミ ネッセンス薄膜の作製

- (a) ZnS:Tb³⁺
- (b) $ZnS:Er^{3+}$
- (c) $ZnS:Nd^{3+}$.

156

V) 素子は添加した希土類イオン固有の発光スペクトルを示し、外部発光効率5×10-6 程度が得られた。

我々はこれらの結果より,他の希土類フッ化物との同 時蒸着においてもほぼ同様の結果が得られるであろうと 考える。

References

1) D.Kahng, Appl. Phys.Lett. 13, (1968) 210.

 E. W. Chase, R. T. Hepplewhite, D. C. Krupka, and D. Kahng, J. Appl. Phys. 40, (1968) 2512.

3) Physics and Chemistry of II-VI Compounds.

ed. M. Aven and J. S. Prener (North-Holland, 1967) CH. 5 230.

- 4) Hiroshi KOBAYASHI, Shosaku TANAKA, Hiroshi SASAKURA, and Yoshihiro HAM-AKAWA, Japan. J. Appl. Phys. 12, (1973) 615,
- 5) 小林洋志·岸田庸子· 熊谷直樹 · 笹倉博 鳥取大 学工学部研究報告 3, (1973) No. 2 90.
- 小林洋志・岸田庸子・田中省作・笹倉博 鳥取大 学工学部研究報告 4, (1973) No. 1 119.
- 7) Hiroshi KOBAYASHI, Shosaku TANAKA, Hiroshi SASAKURA, and Yoshihiro HAMA-KAWA, Japan. J. Appl. Phys. 12, (1973) 1854