122 research outputs found

    Angular Dependence of the High-Magnetic-Field Phase Diagram of URu2Si2

    Full text link
    We present measurements of the magnetoresistivity RHOxx of URu2Si2 single crystals in high magnetic fields up to 60 T and at temperatures from 1.4 K to 40 K. Different orientations of the magnetic field have been investigated permitting to follow the dependence on Q of all magnetic phase transitions and crossovers, where Q is the angle between the magnetic field and the easy-axis c. We find out that all magnetic transitions and crossovers follow a simple 1/cos(Q) -law, indicating that they are controlled by the projection of the field on the c-axis

    Re-entrant hidden order at a metamagnetic quantum critical end point

    Get PDF
    Magnetization measurements of URu2Si2 in pulsed magnetic fields of 44 T reveal that the hidden order phase is destroyed before appearing in the form of a re-entrant phase between ~ 36 and 39 T. Evidence for conventional itinerant electron metamagnetism at higher temperatures suggests that the re-entrant phase is created in the vicinity of a quantum critical end point.Comment: 8 pages, including 3 figures (Physical Review Letters, in press) a systematic error in the field calibration has been fixed since the original submission of this manuscrip

    Field Reentrance of the Hidden Order State of URu2Si2 under Pressure

    Full text link
    Combination of neutron scattering and thermal expansion measurements under pressure shows that the so-called hidden order phase of URu2Si2 reenters in magnetic field when antiferromagnetism (AF) collapses at H_AF (T). Macroscopic pressure studies of the HO-AF boundaries were realized at different pressures via thermal expansion measurements under magnetic field using a strain gauge. Microscopic proof at a given pressure is the reappearance of the resonance at Q_0=(1,0,0) under field which is correlated with the collapse of the AF Bragg reflections at Q_0.Comment: 5 pages, 6 figures, accepted for publication in J. Phys. Soc. Jp

    Magnetic Exciton Mediated Superconductivity in the Hidden-Order Phase of URu2Si2

    Full text link
    We propose the magnetic exciton mediated superconductivity occurring in the enigmatic hidden-order phase of URu2Si2. The characteristic of the massive collective excitation observed only in the hidden-order phase is well reproduced by the antiferro hexadecapole ordering model as the trace of the dispersive crystalline-electric-field excitation. The disappearance of the superconductivity in the high-pressure antiferro magnetic phase can naturally be understood by the sudden suppression of the magnetic-exciton intensity. The analysis of the momentum dependence of the magnetic-exciton mode leads to the exotic chiral d-wave singlet pairing in the Eg symmetry. The Ising-like magnetic-field response of the mode yields the strong anisotropy observed in the upper critical field even for the rather isotropic 3-dimensional Fermi surfaces of this compound.Comment: 5 pages, 4 figure

    Theory of de Haas-van Alphen Effect in Type-II Superconductors

    Full text link
    Theory of quasiparticle spectra and the de Haas-van Alphen (dHvA) oscillation in type-II superconductors are developed based on the Bogoliubov-de Gennes equations for vortex-lattice states. As the pair potential grows through the superconducting transition, each degenerate Landau level in the normal state splits into quasiparticle bands in the magnetic Brillouin zone. This brings Landau-level broadening, which in turn leads to the extra dHvA oscillation damping in the vortex state. We perform extensive numerical calculations for three-dimensional systems with various gap structures. It is thereby shown that (i) this Landau-level broadening is directly connected with the average gap at H=0 along each Fermi-surface orbit perpendicular to the field H; (ii) the extra dHvA oscillation attenuation is caused by the broadening around each extremal orbit. These results imply that the dHvA experiment can be a unique probe to detect band- and/or angle-dependent gap amplitudes. We derive an analytic expression for the extra damping based on the second-order perturbation with respect to the pair potential for the Luttinger-Ward thermodynamic potential. This formula reproduces all our numerical results excellently, and is used to estimate band-specific gap amplitudes from available data on NbSe_2, Nb_3Sn, and YNi_2B_2C. The obtained value for YNi_2B_2C is fairly different from the one through a specific-heat measurement, indicating presence of gap anisotropy in this material. C programs to solve the two-dimensional Bogoliubov-de Gennes equations are available at http://phys.sci.hokudai.ac.jp/~kita/index-e.html .Comment: 16 pages, 11 figure

    On the Hidden Order in URu2_{2}Si2_{2} --- Antiferro Hexadecapole Order and its Consequences

    Full text link
    An antiferro ordering of an electric hexadecapole moment is discussed as a promising candidate for the long standing mystery of the hidden order phase in URu2_{2}Si2_{2}. Based on localized ff-electron picture, we discuss the rationale of the selected multipole and the consequences of the antiferro hexadecapole order of xy(x2y2)xy(x^{2}-y^{2}) symmetry. The mean-field solutions and the collective excitations from them explain reasonably significant experimental observations: the strong anisotropy in the magnetic susceptibility, characteristic behavior of pressure versus magnetic field or temperature phase diagrams, disappearance of inelastic neutron-scattering intensity out of the hidden order phase, and insensitiveness of the NQR frequency at Ru-sites upon ordering. A consistency with the strong anisotropy in the magnetic responses excludes all the multipoles in two-dimensional representations, such as (Oyz,Ozx)(O_{yz},O_{zx}). The expected azimuthal angle dependences of the resonant X-ray scattering amplitude are given. The (x2y2)(x^{2}-y^{2})-type antiferro quadrupole should be induced by an in-plane magnetic field along [110][110], which is reflected in the thermal expansion and the elastic constant of the transverse (c11c12)/2(c_{11}-c_{12})/2 mode. The (x2y2)(x^{2}-y^{2})-type [(xy)(xy)-type] antiferro quadrupole is also induced by applying the uniaxial stress along [110][110] direction [[100][100] direction]. A detection of these induced antiferro quadrupoles under the in-plane magnetic field or the uniaxial stress using the resonant X-ray scattering provides a direct redundant test for the proposed order parameter.Comment: 10 pages, 10 figures, 5 table
    corecore