43 research outputs found

    Urinary adiponectin in DKD

    Get PDF
    Aims: Since diabetes-associated kidney complication changes from diabetic nephropathy to diabetic kidney disease (DKD), more suitable biomarkers than urinary albumin are required. It has been hypothesized that urinary adiponectin (u-ADPN) is associated with the progression of DKD. We therefore evaluated the effectiveness of u-ADPN in predicting the decline of the renal function in patients with diabetes prior to end-stage renal disease. Methods: An ultrasensitive immune complex transfer enzyme immunoassay (ICT-EIA) was used to measure total and high molecular weight (HMW) adiponectin separately. We evaluated the relationships between the creatinine-adjusted urinary total-ADPN and HMW-ADPN, albumin (UACR) and liver-type fatty acid binding protein (L-FABP) at baseline and the 2-year change of the estimated glomerular filtration rate (ΔeGFR). Results: This 2-year prospective observational study included 201 patients with diabetes. These patients were divided into three groups according to their ΔeGFR: ≤-10 ml/min/1.73m2, >-10 and ≤0 ml/min/1.73m2, and >0 ml/min/1.73m2. Jonckheere-Terpstra test showed that lower ΔeGFR was associated with higher u-HMW-ADPN (p = 0.045). In logistic regression analysis, u-HMW-ADPN was associated with ΔeGFR after adjusted age, sex, and basal eGFR. Conclusion: Urinary HMW-ADPN could predict a declining renal function in patients with diabetes

    Dynapenia and AGEs in type 2 diabetes

    Get PDF
    Aims/Introduction: Advanced glycation end-products (AGEs), which are a major cause of diabetic vascular complications, accumulate in various tissues under chronic hyperglycemic conditions, as well as with aging in patients with diabetes. The loss of muscle mass and strength, so-called sarcopenia and dynapenia, has recently been recognized as a diabetic complication. However, the influence of accumulated AGEs on muscle mass and strength remains unclear. The present study aimed to evaluate the association of sarcopenia and dynapenia with accumulated AGEs in patients with type 2 diabetes. Materials and Methods: We recruited 166 patients with type 2 diabetes aged ≥30 years (mean age 63.2 ± 12.3 years; body mass index 26.3 ± 4.9 kg/m2; glycated hemoglobin 7.1 ± 1.1%). Skin autofluorescence as a marker of AGEs, limb skeletal muscle mass index, grip strength, knee extension strength and gait speed were assessed. Results: Sarcopenia and dynapenia were observed in 7.2 and 13.9% of participants, respectively. Skin autofluorescence was significantly higher in patients with sarcopenia and dynapenia. Skin autofluorescence was the independent determinant for skeletal muscle mass index, grip strength, knee extension strength, sarcopenia and dynapenia. Conclusions: Accumulated AGEs could contribute to reduced muscle mass and strength, leading to sarcopenia and dynapenia in patients with type 2 diabetes

    Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data

    Get PDF
    Japanese laser interferometric gravitational wave detectors, TAMA300 and LISM, performed a coincident observation during 2001. We perform a coincidence analysis to search for inspiraling compact binaries. The length of data used for the coincidence analysis is 275 hours when both TAMA300 and LISM detectors are operated simultaneously. TAMA300 and LISM data are analyzed by matched filtering, and candidates for gravitational wave events are obtained. If there is a true gravitational wave signal, it should appear in both data of detectors with consistent waveforms characterized by masses of stars, amplitude of the signal, the coalescence time and so on. We introduce a set of coincidence conditions of the parameters, and search for coincident events. This procedure reduces the number of fake events considerably, by a factor 104\sim 10^{-4} compared with the number of fake events in single detector analysis. We find that the number of events after imposing the coincidence conditions is consistent with the number of accidental coincidences produced purely by noise. We thus find no evidence of gravitational wave signals. We obtain an upper limit of 0.046 /hours (CL =90= 90 %) to the Galactic event rate within 1kpc from the Earth. The method used in this paper can be applied straightforwardly to the case of coincidence observations with more than two detectors with arbitrary arm directions.Comment: 28 pages, 17 figures, Replaced with the version to be published in Physical Review

    Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000-2004

    Get PDF
    We analyze the data of TAMA300 detector to search for gravitational waves from inspiraling compact star binaries with masses of the component stars in the range 1-3Msolar. In this analysis, 2705 hours of data, taken during the years 2000-2004, are used for the event search. We combine the results of different observation runs, and obtained a single upper limit on the rate of the coalescence of compact binaries in our Galaxy of 20 per year at a 90% confidence level. In this upper limit, the effect of various systematic errors such like the uncertainty of the background estimation and the calibration of the detector's sensitivity are included.Comment: 8 pages, 4 Postscript figures, uses revtex4.sty The author list was correcte

    Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within our Galaxy

    Get PDF
    TAMA300, an interferometric gravitational-wave detector with 300-m baseline length, has been developed and operated with sufficient sensitivity to detect gravitational-wave events within our galaxy and sufficient stability for observations; the interferometer was operated for over 10 hours stably and continuously. With a strain-equivalent noise level of h5×1021/Hzh\sim 5 \times 10^{-21} /\sqrt{\rm Hz}, a signal-to-noise ratio (SNR) of 30 is expected for gravitational waves generated by a coalescence of 1.4 MM_\odot-1.4 MM_\odot binary neutron stars at 10 kpc distance. %In addition, almost all noise sources which limit the sensitivity and which %disturb the stable operation have been identified. We evaluated the stability of the detector sensitivity with a 2-week data-taking run, collecting 160 hours of data to be analyzed in the search for gravitational waves.Comment: 5 pages, 4 figure

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses

    Get PDF
    We present data-analysis schemes and results of observations with the TAMA300 gravitational-wave detector, targeting burst signals from stellar-core collapse events. In analyses for burst gravitational waves, the detection and fake-reduction schemes are different from well-investigated ones for a chirp-wave analysis, because precise waveform templates are not available. We used an excess-power filter for the extraction of gravitational-wave candidates, and developed two methods for the reduction of fake events caused by non-stationary noises of the detector. These analysis schemes were applied to real data from the TAMA300 interferometric gravitational wave detector. As a result, fake events were reduced by a factor of about 1000 in the best cases. The resultant event candidates were interpreted from an astronomical viewpoint. We set an upper limit of 2.2x10^3 events/sec on the burst gravitational-wave event rate in our Galaxy with a confidence level of 90%. This work sets a milestone and prospects on the search for burst gravitational waves, by establishing an analysis scheme for the observation data from an interferometric gravitational wave detector
    corecore