20 research outputs found

    Delamination of trophoblast-like syncytia from the amniotic ectodermal analogue in human primed embryonic stem cell-based differentiation model

    Get PDF
    Human primed embryonic stem cells (ESCs) are known to be converted to cells with several trophoblast properties, but it has remained controversial whether this phenomenon represents the inherent differentiation competence of human primed ESCs to trophoblast lineages. In this study, we report that chemical blockage of ACTIVIN/NODAL and FGF signals is sufficient to steer human primed ESCs into GATA3-expressing cells that give rise to placental hormone-producing syncytia analogous to syncytiotrophoblasts of the post-implantation stage of the human embryo. Despite their cytological similarity to syncytiotrophoblasts, these syncytia arise from the non-trophoblastic differentiation trajectory that recapitulates amniogenesis. These results provide insights into the possible extraembryonic differentiation pathway that is unique in primate embryogenesis

    A RHO Small GTPase Regulator ABR Secures Mitotic Fidelity in Human Embryonic Stem Cells

    Get PDF
    Pluripotent stem cells can undergo repeated self-renewal while retaining genetic integrity, but they occasionally acquire aneuploidy during long-term culture, which is a practical obstacle for medical applications of human pluripotent stem cells. In this study, we explored the biological roles of ABR, a regulator of RHO family small GTPases, and found that it has pivotal roles during mitotic processes in human embryonic stem cells (hESCs). Although ABR has been shown to be involved in dissociation-induced hESC apoptosis, it does not appear to have direct effects on cell survival unless cell-cell contact is impaired. Instead, we found that it is important for faithful hESC division. Mechanistically, ABR depletion compromised centrosome dynamics and predisposed the cell to chromosome misalignment and missegregation, which raised the frequency of aneuploidy. These results provide insights into the mechanisms that support the genetic integrity of self-renewing hESCs

    Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue

    Get PDF
    The developing dorsomedial telencephalon includes the medial pallium, which goes on to form the hippocampus. Generating a reliable source of human hippocampal tissue is an important step for cell-based research into hippocampus-related diseases. Here we show the generation of functional hippocampal granule- and pyramidal-like neurons from self-organizing dorsomedial telencephalic tissue using human embryonic stem cells (hESCs). First, we develop a hESC culture method that utilizes bone morphogenetic protein (BMP) and Wnt signalling to induce choroid plexus, the most dorsomedial portion of the telencephalon. Then, we find that titrating BMP and Wnt exposure allowed the self-organization of medial pallium tissues. Following long-term dissociation culture, these dorsomedial telencephalic tissues give rise to Zbtb20+/Prox1+ granule neurons and Zbtb20+/KA1+ pyramidal neurons, both of which were electrically functional with network formation. Thus, we have developed an in vitro model that recapitulates human hippocampus development, allowing the generation of functional hippocampal granule- and pyramidal-like neurons

    Transforming Growth Factor β-Dependent Sequential Activation of Smad, Bim, and Caspase-9 Mediates Physiological Apoptosis in Gastric Epithelial Cells

    No full text
    Transforming growth factor β (TGF-β) has been implicated in the maintenance of homeostasis in various organs, including the gastric epithelium. In particular, TGF-β-induced signaling was shown to be required for the differentiation-associated physiological apoptosis of gastric epithelial cells, but its mechanism has not been well understood. In this study, the molecular mechanism of TGF-β-induced apoptosis was analyzed in a human gastric epithelial cell line, SNU16, as an in vitro model. Expression of Smad7 and Bcl-X(L), but not viral FLIP, was shown to prevent TGF-β-induced apoptosis, indicating an exclusive requirement of the activation of Smad signaling pathway and mitochondrial dysfunction followed by activation of caspase-9. In addition, treatment with TGF-β induced binding of Bim, a proapoptotic Bcl-2 homology domain 3 (BH3)-only protein, to Bcl-X(L), which is dependent on the activation of Smad, and reduction in the expression of Bim by RNA interference decreased the sensitivity to TGF-β-induced apoptosis. Moreover, we found abnormalities in the gastric epithelium of both Bim and caspase-9 knockout mice; these abnormalities were associated with a defect of physiological apoptosis in gastric epithelial cells. These results indicate for the first time that TGF-β is involved in the physiological loss of gastric epithelial cells by activating apoptosis mediated by Smad, Bim, and caspase-9

    Histopathological study of corpora amylacea pulmonum

    No full text
    In this paper, we present a rare disorder which is known as corpora amylacea pulmonum. X-ray CT scanning showed an abnormal focus of the lung as a solitary mass with high density and spicular features around the surface. The resected l u n ~ti ssue was - - U characterized by the appearance of round, concentrically laminated acellular bodies about 40-80 microns in diameter. The bodies were usually found lying free in the alveolar space and surrounded by the exudate alveolar macrophages or multinuclear giant cells. Some of these macrophages were in a state of progressive degeneration. The bodies showed an affinity for Congo red and exhibited partial birefringence. Moreover, al1 the bodies had a strong positivity for the PAS reaction and anti lysozyme antibodies. The exudate alveolar macrophages and multinuclear giant cells also displayed reactivity for PAS and lysozyme in a similar manner to that of the bodies. Electron microscopically the bodies were fundamentally composed of fibrillar elements, which bore some resemblance to amyloid fibrils and probably accounted for the partial affinity of the bodies for Congo red. These amyloid-like fibrils were also found in the cytoplasm of the macrophages. This suggested that the concentrically laminated bodies in corpora amylacea pulmonum might be formed by sequential aggregation, fusion, coalescence and compaction of degenerated alveolar macrophages

    Feeder-Free Generation and Long-Term Culture of Human Induced Pluripotent Stem Cells Using Pericellular Matrix of Decidua Derived Mesenchymal Cells

    Get PDF
    <div><p>Human ES cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are usually generated and maintained on living feeder cells like mouse embryonic fibroblasts or on a cell-free substrate like Matrigel. For clinical applications, a quality-controlled, xenobiotic-free culture system is required to minimize risks from contaminating animal-derived pathogens and immunogens. We previously reported that the pericellular matrix of decidua-derived mesenchymal cells (PCM-DM) is an ideal human-derived substrate on which to maintain hiPSCs/hESCs. In this study, we examined whether PCM-DM could be used for the generation and long-term stable maintenance of hiPSCs. Decidua-derived mesenchymal cells (DMCs) were reprogrammed by the retroviral transduction of four factors (OCT4, SOX2, KLF4, c-MYC) and cultured on PCM-DM. The established hiPSC clones expressed alkaline phosphatase, hESC-specific genes and cell-surface markers, and differentiated into three germ layers in vitro and in vivo. At over 20 passages, the hiPSCs cultured on PCM-DM held the same cellular properties with genome integrity as those at early passages. Global gene expression analysis showed that the GDF3, FGF4, UTF1, and XIST expression levels varied during culture, and GATA6 was highly expressed under our culture conditions; however, these gene expressions did not affect the cells’ pluripotency. PCM-DM can be conveniently prepared from DMCs, which have a high proliferative potential. Our findings indicate that PCM-DM is a versatile and practical human-derived substrate that can be used for the feeder-cell-free generation and long-term stable maintenance of hiPSCs.</p> </div

    Increased GATA6 expression in 201B7 on PCM-DM with StemPro medium.

    No full text
    <p>A) Quantitative RT-PCR analysis of OCT4 and GATA6 for 201B7 cultured on PCM-DM with MEF-CM or StemPro medium. “+number” indicates the passage number after reseeding on PCM-DM. Statistical significances are determined by Scheffe’s test after two-way ANOVA. Results of comparisons among groups of medium within each passage are shown (*, P<0.01). B) Morphology of 201B7 cultured on PCM-DM with MEF-CM or StemPro medium. Scale bar = 500 µm.</p
    corecore