12 research outputs found
Connectionism and wavelets in the modeling and analysis of neural system dynamics
grantor:
University of TorontoThis thesis explores the analysis and modeling of sensori-motor systems in particular and neural systems in general. 'Chapter 1: Neural Networks and Motor Control' reviews the state of connectionist theory and demonstrates the importance of dynamics and biological relevance through a detailed case study. To this end, Chapters 2 and 3 document the development of novel approaches in the acquisition, analysis and modeling of dynamical non-linear neural processes. Chapter 2 augments current techniques in spectral analysis and introduces a calibrated version of the wavelet transform. The improved spectral and temporal resolutions of the algorithm, as compared with traditional Fourier-based joint time-frequency methods, is demonstrated through testing on synthetic data. The thesis then proceeds to describe four applications of the technique including: (i) Identification of EOG saccades; (ii) A first report of high-frequency transients in Kindling; (iii) Wavelet analysis of mu rhythms in EEG; (iv) The first application of wavelet analysis for the purpose of characterizing the dynamics of a recurrent neural network model. The final chapter draws technical and theoretical conclusions from the above applications. The thesis includes the source code for the data acquisition, wavelet analysis and modeling programs.M.Sc
Alzheimer Disease Research in the 21st Century: Past and Current Failures, New Perspectives and Funding Priorities
Much of Alzheimer disease (AD) research has been traditionally based on the use of animals, which have been extensively applied in an effort to both improve our understanding of the pathophysiological mechanisms of the disease and to test novel therapeutic approaches. However, decades of such research have not effectively translated into substantial therapeutic success for human patients. Here we critically discuss these issues in order to determine how existing human-based methods can be applied to study AD pathology and develop novel therapeutics. These methods, which include patient-derived cells, computational analysis and models, together with large-scale epidemiological studies represent novel and exciting tools to enhance and forward AD research. In particular, these methods are helping advance AD research by contributing multifactorial and multidimensional perspectives, especially considering the crucial role played by lifestyle risk factors in the determination of AD risk. In addition to research techniques, we also consider related pitfalls and flaws in the current research funding system. Conversely, we identify encouraging new trends in research and government policy. In light of these new research directions, we provide recommendations regarding prioritization of research funding. The goal of this document is to stimulate scientific and public discussion on the need to explore new avenues in AD research, considering outcome and ethics as core principles to reliably judge traditional research efforts and eventually undertake new research strategies
The Adverse Outcome Pathway Framework Applied to Neurological Symptoms of COVID-19
Several reports have shown that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has the potential to also be neurotropic. However, the mechanisms by which SARS-CoV-2 induces neurologic injury, including neurological and/or psychological symptoms, remain unclear. In this review, the available knowledge on the neurobiological mechanisms underlying COVID-19 was organized using the AOP framework. Four AOPs leading to neurological adverse outcomes (AO), anosmia, encephalitis, stroke, and seizure, were developed. Biological key events (KEs) identified to induce these AOs included binding to ACE2, blood–brain barrier (BBB) disruption, hypoxia, neuroinflammation, and oxidative stress. The modularity of AOPs allows the construction of AOP networks to visualize core pathways and recognize neuroinflammation and BBB disruption as shared mechanisms. Furthermore, the impact on the neurological AOPs of COVID-19 by modulating and multiscale factors such as age, psychological stress, nutrition, poverty, and food insecurity was discussed. Organizing the existing knowledge along an AOP framework can represent a valuable tool to understand disease mechanisms and identify data gaps and potentially contribute to treatment, and prevention. This AOP-aligned approach also facilitates synergy between experts from different backgrounds, while the fast-evolving and disruptive nature of COVID-19 emphasizes the need for interdisciplinarity and cross-community research
COVID-19 through Adverse Outcome Pathways: Building networks to better understand the disease - 3rd CIAO AOP Design Workshop
On April 28-29, 2021, 50 scientists from different fields of expertise met for the 3rd online CIAO workshop. The CIAO project “Modelling the Pathogenesis of COVID-19 using the Adverse Outcome Pathway (AOP) framework” aims at building a holistic assembly of the available scientific knowledge on COVID-19 using the AOP framework. An individual AOP depicts the disease progression from the initial contact with the SARS-CoV-2 virus through biological key events (KE) toward an adverse outcome such as respiratory distress, anosmia or multiorgan failure. Assembling the individual AOPs into a network highlights shared KEs as central biological nodes involved in multiple outcomes observed in COVID-19 patients. During the workshop, the KEs and AOPs established so far by the CIAO members were presented and positioned on a timeline of the disease course. Modulating factors influencing the progression and severity of the disease were also addressed as well as factors beyond purely biological phenomena. CIAO relies on an interdisciplinary crowdsourcing effort, therefore, approaches to expand the CIAO network by widening the crowd and reaching stakeholders were also discussed. To conclude the workshop, it was decided that the AOPs/KEs will be further consolidated, integrating virus variants and long COVID when relevant, while an outreach campaign will be launched to broaden the CIAO scientific crowd
COVID-19 through Adverse Outcome Pathways: Building networks to better understand the disease - 3rd CIAO AOP Design Workshop
On April 28-29, 2021, 50 scientists from different fields of expertise met for the 3rd online CIAO workshop. The CIAO project “Modelling the Pathogenesis of COVID-19 using the Adverse Outcome Pathway (AOP) framework” aims at building a holistic assembly of the available scientific knowledge on COVID-19 using the AOP framework. An individual AOP depicts the disease progression from the initial contact with the SARS-CoV-2 virus through biological key events (KE) toward an adverse outcome such as respiratory distress, anosmia or multiorgan failure. Assembling the individual AOPs into a network highlights shared KEs as central biological nodes involved in multiple outcomes observed in COVID-19 patients. During the workshop, the KEs and AOPs established so far by the CIAO members were presented and positioned on a timeline of the disease course. Modulating factors influencing the progression and severity of the disease were also addressed as well as factors beyond purely biological phenomena. CIAO relies on an interdisciplinary crowdsourcing effort, therefore, approaches to expand the CIAO network by widening the crowd and reaching stakeholders were also discussed. To conclude the workshop, it was decided that the AOPs/KEs will be further consolidated, integrating virus variants and long COVID when relevant, while an outreach campaign will be launched to broaden the CIAO scientific crowd