130 research outputs found

    Construction and characterization of the PGN_0296 mutant of Porphyromonas gingivalis

    Get PDF
    The periodontal pathogen Porphyromonas gingivalis produces gingipains (Kgp, RgpA, and RgpB), cysteine proteases involved in the organism's virulence, and pigmentation. We previously showed that deletion of the PGN_0297 and PGN_0300 genes reduced the proteolytic activity of gingipains. The role of the PGN_0296 gene, consisting of an operon with the PGN_0297 and PGN_0300 genes, is unclear. Herein, we examined the effect of PGN_0296 gene deletion on the proteolytic activity. Although the proteolytic activity of the gingipains did not decrease in the culture supernatant of a PGN_0296 gene deletion mutant (Ī”PGN_0296), the growth was delayed

    Isolation and amino acid sequence of the 30S ribosomal protein S19 from Mycobacterium bovis BCG

    Get PDF
    AbstractThe 30S ribosomal proteins from Mycobacterium bovis BCG were separated by reverse phase-high performance liquid chromatography (RP-HPLC). The isolated proteins were analyzed by SDS-PAGE, blotted on PVDF-membranes and subjected to sequence analyses using a gas-phase sequencer to correlate them to those of the well studied Escherichia coli and Bacillus stearothermophilus ribosomes. Moreover, the internal amino acid sequence of one ribosomal protein, MboS19, which is homologous to E. coli ribosomal protein S19 (EcoS19) and B. stearothermophilus ribosomal protein S19 (BstS19), was further analyzed by sequencing its internal peptides and two segments from the N- and C-termini of the protein were selected to deduce the sequence of two oligonucleotide primers which were used in a polymerase chain reaction. Using the amplified DNA fragment thus obtained as a hybridization probe, the gene encoding protein S19 was identified and cloned. Sequence analysis of the DNA fragment, together with peptide sequence analysis could determine the complete amino acid sequence of MboS19. This sequence proved to be 64% and 71% identical to those of the corresponding S19 proteins from the eubacteria E. coli, and B. stearothermophilus, respectively; 33% of the residues of MboS19 were identical to those in the archaebacteral ribosomal protein HmaS19

    Roles of Porphyromonas gulae proteases in bacterial and host cell biology

    Get PDF
    Porphyromonas gulae, an animal-derived periodontal pathogen, expresses several virulence factors, including fimbria, lipopolysaccharide (LPS) and proteases. We previously reported that its invasive efficiency was dependent on fimbriae types. In addition, P. gulae LPS increased inflammatory responses via toll-like receptors. The present study was conducted to investigate the involvement of P. gulae proteases in bacterial and host cell biology. Porphyromonas gulae strains showed an ability to agglutinate mouse erythrocytes and also demonstrated co-aggregation with Actinomyces viscosus, while the protease inhibitors antipain, PMSF, TLCK and leupeptin diminished P. gulae proteolytic activity, resulting in inhibition of haemagglutination and co-aggregation with A. viscosus. In addition, specific proteinase inhibitors were found to reduce bacterial cell growth. Porphyromonas gulae inhibited Ca9-22 cell proliferation in a multiplicity of infection- and time-dependent manner. Additionally, P. gulae-induced decreases in cell contact and adhesion-related proteins were accompanied by a marked change in cell morphology from well spread to rounded. In contrast, inhibition of protease activity prevented degradation of proteins, such as E-cadherin, beta-catenin and focal adhesion kinase, and also blocked inhibition of cell proliferation. Together, these results indicate suppression of the amount of human proteins, such as gamma-globulin, fibrinogen and fibronectin, by P. gulae proteases, suggesting that a novel protease complex contributes to bacterial virulence

    Construction and Characterization of a PGN_0297 Mutant of Porphyromonas gingivalis: Evidence of the Contribution of PGN_0297 to Gingipain Activity

    Get PDF
    The periodontal pathogen Porphyromonas gingivalis shows colonial pigmentation on blood agar and produces gingipains (Kgp, RgpA, and RgpB), cysteine proteases involved in an organismā€™s virulence and pigmentation. We showed previously that deletion of the PGN_0300 gene abolished the pigmentation activity and reduced the proteolytic activity of gingipains. The role of the PGN_0297 gene, which consists of an operon with the PGN_0300 gene, is unclear. Herein we examined the effect of PGN_0297 gene deletion on the pigmentation and proteolytic activities and transcriptional levels of gingipains. A PGN_0297 gene deletion mutant (Ī”PGN_0297) did not exhibit the pigmentation. The proteolytic activity of the gingipains was decreased in the culture supernatant and on the cell surface of Ī”PGN_0297. The mutant Ī”PGN_0297 failed to attenuate Akt phosphorylation at Thr308 and Ser473, but both phosphorylations were attenuated in the wild-type and its complementation strain. The deletion of PGN_0297 gene did not substantially affect the transcriptional levels of the gingipain genes kgp, rgpA, and rgpB. Taken together, these results indicate that PGN_0297 is closely involved in the secretion and maturation of gingipains

    Rescue from Stx2-Producing E.Ā coli-Associated Encephalopathy by Intravenous Injection of Muse Cells in NOD-SCID Mice

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) causes hemorrhagic colitis, hemolytic uremic syndrome, and acute encephalopathies that may lead to sudden death or severe neurologic sequelae. Current treatments, including immunoglobulin G (IgG) immunoadsorption, plasma exchange, steroid pulse therapy, and the monoclonal antibody eculizumab, have limited effects against the severe neurologic sequelae. Multilineage-differentiating stress-enduring (Muse) cells are endogenous reparative non-tumorigenic stem cells that naturally reside in the body and are currently under clinical trials for regenerative medicine. When administered intravenously, Musecells accumulate to the damaged tissue, where they exert anti-inflammatory, anti-apoptotic, anti-fibrotic, and immunomodulatory effects, and replace damaged cells by differentiating into tissue-constituent cells. Here, severely immunocompromisedĀ non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mice orally inoculated with 9Ā Ć— 109 colony-forming units of STEC O111 and treated 48Ā h later with intravenous injection of 5Ā Ć— 104 Muse cells exhibited 100% survival and no severe after-effects of infection. Suppression of granulocyte-colony-stimulating factor (G-CSF) by RNAi abolished the beneficial effects of Muse cells, leading to a 40% death and significant body weight loss, suggesting the involvement of G-CSF in the beneficial effects of Muse cells in STEC-infected mice. Thus, intravenous administration of Muse cells could be a candidate therapeutic approach for preventing fatal encephalopathy after STEC infection

    Rescue from Stx2-Producing E.Ā coli-Associated Encephalopathy by Intravenous Injection of Muse Cells in NOD-SCID Mice

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) causes hemorrhagic colitis, hemolytic uremic syndrome, and acute encephalopathies that may lead to sudden death or severe neurologic sequelae. Current treatments, including immunoglobulin G (IgG) immunoadsorption, plasma exchange, steroid pulse therapy, and the monoclonal antibody eculizumab, have limited effects against the severe neurologic sequelae. Multilineage-differentiating stress-enduring (Muse) cells are endogenous reparative non-tumorigenic stem cells that naturally reside in the body and are currently under clinical trials for regenerative medicine. When administered intravenously, Musecells accumulate to the damaged tissue, where they exert anti-inflammatory, anti-apoptotic, anti-fibrotic, and immunomodulatory effects, and replace damaged cells by differentiating into tissue-constituent cells. Here, severely immunocompromised non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mice orally inoculated with 9 Ɨ 109 colony-forming units of STEC O111 and treated 48 h later with intravenous injection of 5 Ɨ 104 Muse cells exhibited 100% survival and no severe after-effects of infection. Suppression of granulocyte-colony-stimulating factor (G-CSF) by RNAi abolished the beneficial effects of Muse cells, leading to a 40% death and significant body weight loss, suggesting the involvement of G-CSF in the beneficial effects of Muse cells in STEC-infected mice. Thus, intravenous administration of Muse cells could be a candidate therapeutic approach for preventing fatal encephalopathy after STEC infection

    Associations of Glucose and Blood Pressure Variability with Cardiac Diastolic Function in Patients with Type 2 Diabetes Mellitus and Hypertension: A Retrospective Observational Study

    Get PDF
    We evaluated the effects of glucose metabolism and blood pressureļ¼ˆBPļ¼‰ variability on cardiac diastolic function in patients with type 2 diabetes mellitusļ¼ˆT2DMļ¼‰ and hypertension. A total of 23 inpatients with T2DM underwent ambulatory BP monitoringļ¼ˆABPMļ¼‰ and echocardiography. BP variability was assessed by measuring the mean BP and the standard deviationļ¼ˆSDļ¼‰ of systolic and diastolic BP over 24 hours, as well as daytime and nighttime ABPM. Cardiac diastolic function was assessed using the echocardiography E/eā€² ratio. Participants had a mean age of 69.0Ā±10.6 years, disease duration of 11.0Ā±10.5 years, glycated hemoglobinļ¼ˆHbA1cļ¼‰ of 8.2ļ¼…Ā±1.3ļ¼…, and glycated albuminļ¼ˆGAļ¼‰ of 22.0ļ¼…Ā±4.2ļ¼…. Univariate analysis showed that the nighttime systolic BP, nighttime SDs of systolic and diastolic BP, urinary albumin, estimated glomerular filtration rate, and GA/HbA1c ratio were all significantly correlated with the E/eā€² ratio. Moreover, stepwise multiple regression analysis identified nighttime SD of diastolic BP, urinary albumin, and GA/HbA1c ratio as independent contributors to the E/eā€² ratio. In patients with T2DM and hypertension, cardiac diastolic function was associated with nighttime diastolic BP variability and the GA/HbA1c ratio

    Coexistence of muscle atrophy and high subcutaneous adipose tissue radiodensity predicts poor prognosis in hepatocellular carcinoma

    Get PDF
    IntroductionWe aimed to assess the prognostic implications of muscle atrophy and high subcutaneous adipose tissue (SAT) radiodensity in patients with hepatocellular carcinoma (HCC).MethodsIn this retrospective study, muscle atrophy was assessed using the psoas muscle index (PMI) obtained from computed tomography. SAT radiodensity was evaluated based on radiodensity measurements. Survival and multivariate analyses were performed to identify factors associated with prognosis. The impact of muscle atrophy and high SAT radiodensity on prognosis was determined through survival analysis.ResultsA total of 201 patients (median age: 71ā€‰years; 76.6% male) with HCC were included. Liver cirrhosis was observed in 72.6% of patients, and the predominant Childā€“Pugh grade was A (77.1%). A total of 33.3% of patients exhibited muscle atrophy based on PMI values, whereas 12.9% had high SAT radiodensity. Kaplanā€“Meier survival analysis demonstrated that patients with muscle atrophy had significantly poorer prognosis than those without muscle atrophy. Patients with high SAT radiodensity had a significantly worse prognosis than those without it. Muscle atrophy, high SAT radiodensity, the Barcelona Clinic Liver Cancer class B, C, or D, and Childā€“Pugh scoreā€‰ā‰„ā€‰6 were significantly associated with overall survival. Further classification of patients into four groups based on the presence or absence of muscle atrophy and high SAT radiodensity revealed that patients with both muscle atrophy and high SAT radiodensity had the poorest prognosis.ConclusionMuscle atrophy and high SAT radiodensity are significantly associated with poor prognosis in patients with HCC. Identifying this high-risk subgroup may facilitate the implementation of targeted interventions, including nutritional therapy and exercise, to potentially improve clinical outcomes

    Loss of ribosomal RNA modification causes developmental defects in zebrafish

    Get PDF
    Non-coding RNAs (ncRNAs) play key roles in diverse cellular activities, and efficient ncRNA function requires extensive posttranscriptional nucleotide modifications. Small nucleolar RNAs (snoRNAs) are a group of ncRNAs that guide the modification of specific nucleotides in ribosomal RNAs (rRNAs) and small nuclear RNAs. To investigate the physiological relevance of rRNA modification in vertebrates, we suppressed the expression of three snoRNAs (U26, U44 and U78), either by disrupting the host gene splicing or by inhibiting the snoRNA precursor processing, and analyzed the consequences of snoRNA loss-of-function in zebrafish. Using a highly sensitive mass spectrometric analysis, we found that decreased snoRNA expression reduces the snoRNA-guided methylation of the target nucleotides. Impaired rRNA modification, even at a single site, led to severe morphological defects and embryonic lethality in zebrafish, which suggests that rRNA modifications play an essential role in vertebrate development. This study highlights the importance of posttranscriptional modifications and their role in ncRNA function in higher eukaryotes

    Involvement of Girdin in the Determination of Cell Polarity during Cell Migration

    Get PDF
    Cell migration is a critical cellular process that determines embryonic development and the progression of human diseases. Therefore, cell- or context-specific mechanisms by which multiple promigratory proteins differentially regulate cell migration must be analyzed in detail. Girdin (girders of actin filaments) (also termed GIV, GĪ±-interacting vesicle associated protein) is an actin-binding protein that regulates migration of various cells such as endothelial cells, smooth muscle cells, neuroblasts, and cancer cells. Here we show that Girdin regulates the establishment of cell polarity, the deregulation of which may result in the disruption of directional cell migration. We found that Girdin interacts with Par-3, a scaffolding protein that is a component of the Par protein complex that has an established role in determining cell polarity. RNA interference-mediated depletion of Girdin leads to impaired polarization of fibroblasts and mammary epithelial cells in a way similar to that observed in Par-3-depleted cells. Accordingly, the expression of Par-3 mutants unable to interact with Girdin abrogates cell polarization in fibroblasts. Further biochemical analysis suggests that Girdin is present in the Par protein complex that includes Par-3, Par-6, and atypical protein kinase C. Considering previous reports showing the role of Girdin in the directional migration of neuroblasts, network formation of endothelial cells, and cancer invasion, these data may provide a specific mechanism by which Girdin regulates cell movement in biological contexts that require directional cell movement
    • ā€¦
    corecore