22 research outputs found

    Three novel rice genes closely related to the <em>Arabidopsis</em> <sub>9<em>IRX</em></sub>, <sub>9<em>IRXL</em></sub>, and<sub>14<em> IRX</em></sub> genes and their roles in xylan biosynthesis

    Get PDF
    Xylan is the second most abundant polysaccharide on Earth, and represents a major component of both dicot wood and the cell walls of grasses. Much knowledge has been gained from studies of xylan biosynthesis in the model plant, Arabidopsis. In particular, the irregular xylem (irx) mutants, named for their collapsed xylem cells, have been essential in gaining a greater understanding of the genes involved in xylan biosynthesis. In contrast, xylan biosynthesis in grass cell walls is poorly understood. We identified three rice genes Os07g49370 (OsIRX9), Os01g48440 (OsIRX9L), and Os06g47340 (OsIRX14), from glycosyltransferase family 43 as putative orthologs to the putative 尾-1,4-xylan backbone elongating Arabidopsis IRX9, IRX9L, and IRX14 genes, respectively. We demonstrate that the over-expression of the closely related rice genes, in full or partly complement the two well-characterized Arabidopsis irregular xylem (irx) mutants: irx9 and irx14. Complementation was assessed by measuring dwarfed phenotypes, irregular xylem cells in stem cross sections, xylose content of stems, xylosyltransferase (XylT) activity of stems, and stem strength. The expression of OsIRX9 in the irx9 mutant resulted in XylT activity of stems that was over double that of wild type plants, and the stem strength of this line increased to 124% above that of wild type. Taken together, our results suggest that OsIRX9/OsIRX9L, and OsIRX14, have similar functions to the Arabidopsis IRX9 and IRX14 genes, respectively. Furthermore, our expression data indicate that OsIRX9 and OsIRX9L may function in building the xylan backbone in the secondary and primary cell walls, respectively. Our results provide insight into xylan biosynthesis in rice and how expression of a xylan synthesis gene may be modified to increase stem strength

    Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues

    Get PDF
    The biology of multicellular organisms is coordinated across multiple size scales, from the subnanoscale of molecules to the macroscale, tissue-wide interconnectivity of cell populations. Here we introduce a method for super-resolution imaging of the multiscale organization of intact tissues. The method, called magnified analysis of the proteome (MAP), linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. MAP is based on the observation that preventing crosslinking within and between endogenous proteins during hydrogel-tissue hybridization allows for natural expansion upon protein denaturation and dissociation. The expanded tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. We use off-the-shelf antibodies for multiple rounds of immunolabeling and imaging of a tissue's magnified proteome, and our experiments demonstrate a success rate of 82% (100/122 antibodies tested). We show that specimen size can be reversibly modulated to image both inter-regional connections and fine synaptic architectures in the mouse brain.United States. National Institutes of Health (1-U01-NS090473-01

    KBase: The United States Department of Energy Systems Biology Knowledgebase.

    Get PDF

    Interaction specificity and coexpression of rice NPR1 homologs 1 and 3 (NH1 and NH3), TGA transcription factors and Negative Regulator of Resistance (NRR) proteins.

    No full text
    BackgroundThe nonexpressor of pathogenesis-related genes 1, NPR1 (also known as NIM1 and SAI1), is a key regulator of SA-mediated systemic acquired resistance (SAR) in Arabidopsis. In rice, the NPR1 homolog 1 (NH1) interacts with TGA transcriptional regulators and the Negative Regulator of Resistance (NRR) protein to modulate the SAR response. Though five NPR1 homologs (NHs) have been identified in rice, only NH1 and NH3 enhance immunity when overexpressed. To understand why NH1 and NH3, but not NH2, NH4, or NH5, contribute to the rice immune response, we screened TGA transcription factors and NRR-like proteins for interactions specific to NH1 and NH3. We also examined their co-expression patterns using publicly available microarray data.ResultsWe tested five NHs, four NRR homologs (RHs), and 13 rice TGA proteins for pair-wise protein interactions using yeast two-hybrid (Y2H) and split YFP assays. A survey of 331 inter-family interactions revealed a broad, complex protein interaction network. To investigate preferred interaction partners when all three families of proteins were present, we performed a bridged split YFP assay employing YFPN-fused TGA, YFPC-fused RH, and NH proteins without YFP fusions. We found 64 tertiary interactions mediated by NH family members among the 120 sets we examined. In the yeast two-hybrid assay, each NH protein was capable of interacting with most TGA and RH proteins. In the split YFP assay, NH1 was the most prevalent interactor of TGA and RH proteins, NH3 ranked the second, and NH4 ranked the third. Based on their interaction with TGA proteins, NH proteins can be divided into two subfamilies: NH1, NH2, and NH3 in one family and NH4 and NH5 in the other.In addition to evidence of overlap in interaction partners, co-expression analyses of microarray data suggest a correlation between NH1 and NH3 expression patterns, supporting their common role in rice immunity. However, NH3 is very tightly co-expressed with RH1 and RH2, while NH1 is strongly, inversely co-expressed with RH proteins, representing a difference between NH1 and NH3 expression patterns.ConclusionsOur genome-wide surveys reveal that each rice NH protein can partner with many rice TGA and RH proteins and that each NH protein prefers specific interaction partners. NH1 and NH3 are capable of interacting strongly with most rice TGA and RH proteins, whereas NH2, NH4, and NH5 have weaker, limited interaction with TGA and RH proteins in rice cells. We have identified rTGA2.1, rTGA2.2, rTGA2.3, rLG2, TGAL2 and TGAL4 proteins as the preferred partners of NH1 and NH3, but not NH2, NH4, or NH5. These TGA proteins may play an important role in NH1- and NH3-mediated immune responses. In contrast, NH4 and NH5 preferentially interact with TGAL5, TGAL7, TGAL8 and TGAL9, which are predicted to be involved in plant development

    Nitric Oxide Emission Reduction in Reheating Furnaces through Burner and Furnace Air-Staged Combustions

    No full text
    In this study, a series of experiments were conducted on a testing facility and a real-scale furnace, for analyzing the nitric oxide (NO) emission reduction. The effects of the temperature, oxygen concentration, and amount of secondary combustion air were investigated in a single-burner combustion system. Additionally, the NO-reduction rate before and after combustion modifications in both the burner and furnace air-staged combustion were evaluated for a real-scale reheating furnace. The air-to-fuel equivalence ratio (位) of individual combustion zones for the furnace was optimized for NO reduction without any incomplete combustion. The results indicated that the NO emission for controlling the 位 of a single-zone decreased linearly with a decrease in the 位 values in the individual firing tests (top-heat, bottom-heat, and bottom-soak zones). Moreover, the multi-zone control of the 位 values for individual combustion zones was optimized at 1.13 (top-preheat), 1.0 (bottom-preheat), 1.0 (top-heat), 0.97 (bottom-heat), 1.0 (top-soak), and 0.97 (bottom-soak). In this firing condition, the modifications reduced the NO emissions by approximately 23%, as indicated by a comparison of the data obtained before and after the modifications. Thus, the combined application of burner and furnace air-staged combustions facilitated NO-emission reduction

    Immunogenicity after Second ChAdOx1 nCoV-19 (AZD1222) Vaccination According to the Individual Reactogenicity, Health Status and Lifestyle

    No full text
    The immune-acquired responses after vaccination vary depending on the type of vaccine and the individual. The purpose of this study was to investigate the relationship between the acquisition of immunity and the side effects, health status, and lifestyle after completion of the second dose of AZD1222. Blood samples were collected after a second dose of AZD1222. The Euroimmun Anti-SARS-CoV-2 ELISA (IgG) for anti-S1 antibody, the cPASS SARS-CoV-2 neutralizing antibody detection kit for the surrogate virus neutralization test, and the T-spot Discovery SARS-CoV-2 kit were used to identify cellular immunogenicity. Patient experience of adverse effects was investigated using questionnaires. Information on health status and lifestyle were collected from the most recent health checkup data. Generally, females experience more reactogenicity in both intensity and duration. The rash of the first shot and chills of the second shot were associated with humoral immunity. However, comprehensive adverse effects had no correlation with humoral and cellular immunity. The T-spot-positive group had a higher creatinine level, which reflects muscle mass, than the T-spot-negative group. Males presented a higher level of T-spot assays. Body mass index and age were negatively correlated with the T-spot assay and anti-S1 antibody, respectively. Immune acquisition after the second AZD1222 shot was not associated with reactogenicity. However, individuals&rsquo; sex, age, and BMI were found to be associated with immunogenicity after vaccination

    RiceNet v2: an improved network prioritization server for rice genes

    No full text
    Rice is the most important staple food crop and a model grass for studies of bioenergy crops. We previously published a genome-scale functional network server called RiceNet, constructed by integrating diverse genomics data and demonstrated the use of the network in genetic dissection of rice biotic stress responses and its usefulness for other grass species. Since the initial construction of the network, there has been a significant increase in the amount of publicly available rice genomics data. Here, we present an updated network prioritization server for Oryza sativa ssp. japonica, RiceNet v2 (http://www.inetbio.org/ricenet), which provides a network of 25 765 genes (70.1% of the coding genome) and 1 775 000 co-functional links. Ricenet v2 also provides two complementary methods for network prioritization based on: (i) network direct neighborhood and (ii) context-associated hubs. RiceNet v2 can use genes of the related subspecies O. sativa ssp. indica and the reference plant Arabidopsis for versatility in generating hypotheses. We demonstrate that RiceNet v2 effectively identifies candidate genes involved in rice root/shoot development and defense responses, demonstrating its usefulness for the grass research community

    RiceNet v2: an improved network prioritization server for rice genes

    Full text link
    Rice is the most important staple food crop and a model grass for studies of bioenergy crops. We previously published a genome-scale functional net-work server called RiceNet, constructed by integrat-ing diverse genomics data and demonstrated the use of the network in genetic dissection of rice biotic stress responses and its usefulness for other grass species. Since the initial construction of the network, there has been a significant increase in the amount of publicly available rice genomics data. Here, we present an updated network prioritization server for Oryza sativa ssp. japonica, RiceNet v
    corecore