1,134 research outputs found

    Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production

    Get PDF
    Table S3. Comparison of fed-batch fermentation with EMY-01, EMY-68, EMY-70S, and EMY-70SP using sugarcane molasses

    Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering

    Get PDF
    BACKGROUND: 2,3-Butanediol is a chemical compound of increasing interest due to its wide applications. It can be synthesized via mixed acid fermentation of pathogenic bacteria such as Enterobacter aerogenes and Klebsiella oxytoca. The non-pathogenic Saccharomyces cerevisiae possesses three different 2,3-butanediol biosynthetic pathways, but produces minute amount of 2,3-butanediol. Hence, we attempted to engineer S. cerevisiae strain to enhance 2,3-butanediol production. RESULTS: We first identified gene deletion strategy by performing in silico genome-scale metabolic analysis. Based on the best in silico strategy, in which disruption of alcohol dehydrogenase (ADH) pathway is required, we then constructed gene deletion mutant strains and performed batch cultivation of the strains. Deletion of three ADH genes, ADH1, ADH3 and ADH5, increased 2,3-butanediol production by 55-fold under microaerobic condition. However, overproduction of glycerol was observed in this triple deletion strain. Additional rational design to reduce glycerol production by GPD2 deletion altered the carbon fluxes back to ethanol and significantly reduced 2,3-butanediol production. Deletion of ALD6 reduced acetate production in strains lacking major ADH isozymes, but it did not favor 2,3-butanediol production. Finally, we introduced 2,3-butanediol biosynthetic pathway from Bacillus subtilis and E. aerogenes to the engineered strain and successfully increased titer and yield. Highest 2,3-butanediol titer (2.29 g·l(-1)) and yield (0.113 g·g(-1)) were achieved by Δadh1 Δadh3 Δadh5 strain under anaerobic condition. CONCLUSIONS: With the aid of in silico metabolic engineering, we have successfully designed and constructed S. cerevisiae strains with improved 2,3-butanediol production

    Application of Artificial Neural Network to Search for Gravitational-Wave Signals Associated with Short Gamma-Ray Bursts

    Get PDF
    We apply a machine learning algorithm, the artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts. The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability is improved by the artificial neural network in comparison to the conventional detection statistic. Therefore, this algorithm increases the distance at which a gravitational-wave signal could be observed in coincidence with a gamma-ray burst. In order to demonstrate the performance, we also evaluate a few seconds of gravitational-wave data segment using the trained networks and obtain the false alarm probability. We suggest that the artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short gamma-ray bursts.Comment: 30 pages, 10 figure

    Multislice B₁ Mapping Method Using Magnetic Resonance Composite Spin Echo Sequences and Simultaneous Echo Refocusing

    Get PDF
    Radiofrequency (RF) transmit field (B1) mapping is a promising method in mitigating the B1 inhomogeneity in various magnetic resonance imaging (MRI) applications. Although several phase- or magnitude-based B1 mapping methods have been proposed, these methods often require complex modeling, long acquisition time, or specialized MRI sequences. A recently introduced simultaneous echo refocusing (SER) technique can be applied in the B1 mapping method to extend the three-dimensional (3D) spatial coverage only without long data acquisition. Therefore, in this study, a multislice B1 mapping method using composite spin echo sequences and SER techniques is proposed to obtain more accurate B1 mapping with short data acquisition time. To evaluate the performance of the proposed B1 mapping method, computational simulations were performed and compared with Morrell’s method, double angle method, and Yarnykh’s method. These results showed that the angle-to-noise ratio of the proposed B1 mapping method has wider B1 range compared to that of other B1 mapping methods. In addition, the proposed B1 mapping methods were compared to the multislice iterative signal intensity mapping method in both phantom and in vivo human experiments, and there was no remarkable difference between the two methods regarding the flip angle distribution in these experiments. Based on these results, this study demonstrated that the proposed B1 mapping method is suitable for accurately measuring B1 propagation under the condition providing reduced scan time and wider 3D coverage of B1 mapping by applying composite RF pulse and SER techniques into the phase-sensitive method
    • 

    corecore