4,672 research outputs found

    Crowd Counting with Decomposed Uncertainty

    Full text link
    Research in neural networks in the field of computer vision has achieved remarkable accuracy for point estimation. However, the uncertainty in the estimation is rarely addressed. Uncertainty quantification accompanied by point estimation can lead to a more informed decision, and even improve the prediction quality. In this work, we focus on uncertainty estimation in the domain of crowd counting. With increasing occurrences of heavily crowded events such as political rallies, protests, concerts, etc., automated crowd analysis is becoming an increasingly crucial task. The stakes can be very high in many of these real-world applications. We propose a scalable neural network framework with quantification of decomposed uncertainty using a bootstrap ensemble. We demonstrate that the proposed uncertainty quantification method provides additional insight to the crowd counting problem and is simple to implement. We also show that our proposed method exhibits the state of the art performances in many benchmark crowd counting datasets.Comment: Accepted in AAAI 2020 (Main Technical Track

    Application of Artificial Neural Network to Search for Gravitational-Wave Signals Associated with Short Gamma-Ray Bursts

    Get PDF
    We apply a machine learning algorithm, the artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts. The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability is improved by the artificial neural network in comparison to the conventional detection statistic. Therefore, this algorithm increases the distance at which a gravitational-wave signal could be observed in coincidence with a gamma-ray burst. In order to demonstrate the performance, we also evaluate a few seconds of gravitational-wave data segment using the trained networks and obtain the false alarm probability. We suggest that the artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short gamma-ray bursts.Comment: 30 pages, 10 figure

    Influence of oxygen vacancy on the electronic structure of HfO2_2 film

    Get PDF
    We investigated the unoccupied part of the electronic structure of the oxygen-deficient hafnium oxide (HfO1.8_{\sim1.8}) using soft x-ray absorption spectroscopy at O KK and Hf N3N_3 edges. Band-tail states beneath the unoccupied Hf 5dd band are observed in the O KK-edge spectra; combined with ultraviolet photoemission spectrum, this indicates the non-negligible occupation of Hf 5dd state. However, Hf N3N_3-edge magnetic circular dichroism spectrum reveals the absence of a long-range ferromagnetic spin order in the oxide. Thus the small amount of dd electron gained by the vacancy formation does not show inter-site correlation, contrary to a recent report [M. Venkatesan {\it et al.}, Nature {\bf 430}, 630 (2004)].Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Kinetic stabilization of Fe film on (4 by 2)-GaAs(100)

    Full text link
    We grow Fe film on (4 by 2)-GaAs(100) at low temperature, (~ 130 K) and study their chemical structure by photoelectron spectroscopy using synchrotron radiation. We observe the effective suppression of As segregation and remarkable reduction of alloy formation near the interface between Fe and substrate. Hence, this should be a way to grow virtually pristine Fe film on GaAs(100). Further, the Fe film is found stable against As segregation even after warmed up to room temperature. There only forms very thin, ~ 8 angstrom thick interface alloy. It is speculated that the interface alloy forms via surface diffusion mediated by interface defects formed during the low temperature growth of the Fe film. Further out-diffusion of both Ga and As are suppressed because it should then proceed via inefficient bulk diffusion.Comment: 4 figure

    Peptidylarginine deiminase (PAD) is a mouse cortical granule protein that plays a role in preimplantation embryonic development

    Get PDF
    BACKGROUND: While mammalian cortical granules are important in fertilization, their biochemical composition and functions are not fully understood. We previously showed that the ABL2 antibody, made against zona free mouse blastocysts, binds to a 75-kDa cortical granule protein (p75) present in a subpopulation of mouse cortical granules. The purpose of this study was to identify and characterize p75, examine its distribution in unfertilized oocytes and preimplantation embryos, and investigate its biological role in fertilization. RESULTS: To identify p75, the protein was immunoprecipitated from ovarian lysates with the ABL2 antibody and analyzed by tandem mass spectrometry (MS/MS). A partial amino acid sequence (VLIGGSFY) was obtained, searched against the NCBI nonredundant database using two independent programs, and matched to mouse peptidylarginine deiminase (PAD). When PAD antibody was used to probe western blots of p75, the antibody detected a single protein band with a molecular weight of 75 kDa, confirming our mass spectrometric identification of p75. Immunohistochemistry demonstrated that PAD was present in the cortical granules of unfertilized oocytes and was released from activated and in vivo fertilized oocytes. After its release, PAD was observed in the perivitelline space, and some PAD remained associated with the oolemma and blastomeres' plasma membranes as a peripheral membrane protein until the blastocyst stage of development. In vitro treatment of 2-cell embryos with the ABL2 antibody or a PAD specific antibody retarded preimplantation development, suggesting that cortical granule PAD plays a role after its release in preimplantation cleavage and early embryonic development. CONCLUSION: Our data showed that PAD is present in the cortical granules of mouse oocytes, is released extracellularly during the cortical reaction, and remains associated with the blastomeres' surfaces as a peripheral membrane protein until the blastocyst stage of development. Our in vitro study supports the idea that extracellular PAD functions in preimplantation development

    De novo copy number variations in cloned dogs from the same nuclear donor

    Get PDF
    BACKGROUND: Somatic mosaicism of copy number variants (CNVs) in human body organs and de novo CNV event in monozygotic twins suggest that de novo CNVs can occur during mitotic recombination. These de novo CNV events are important for understanding genetic background of evolution and diverse phenotypes. In this study, we explored de novo CNV event in cloned dogs with identical genetic background. RESULTS: We analyzed CNVs in seven cloned dogs using the nuclear donor genome as reference by array-CGH, and identified five de novo CNVs in two of the seven clones. Genomic qPCR, dye-swap array-CGH analysis and B-allele profile analysis were used for their validation. Two larger de novo CNVs (5.2 Mb and 338 Kb) on chromosomes X and 19 in clone-3 were consistently validated by all three experiments. The other three smaller CNVs (sized from 36.1 to76.4 Kb) on chromosomes 2, 15 and 32 in clone-3 and clone-6 were verified by at least one of the three validations. In addition to the de novo CNVs, we identified a 37 Mb-sized copy neutral de novo loss of heterozygosity event on chromosome 2 in clone-6. CONCLUSIONS: To our knowledge, this is the first report of de novo CNVs in the cloned dogs which were generated by somatic cell nuclear transfer technology. To study de novo genetic events in cloned animals can help understand formation mechanisms of genetic variants and their biological implications

    Energy Spectrum of Bloch Electrons Under Checkerboard Field Modulations

    Full text link
    Two-dimensional Bloch electrons in a uniform magnetic field exhibit complex energy spectrum. When static electric and magnetic modulations with a checkerboard pattern are superimposed on the uniform magnetic field, more structures and symmetries of the spectra are found, due to the additional adjustable parameters from the modulations. We give a comprehensive report on these new symmetries. We have also found an electric-modulation induced energy gap, whose magnitude is independent of the strength of either the uniform or the modulated magnetic field. This study is applicable to experimentally accessible systems and is related to the investigations on frustrated antiferromagnetism.Comment: 8 pages, 6 figures (reduced in sizes), submitted to Phys. Rev.

    The East-Asian VLBI Network

    Full text link
    The East-Asian VLBI Network (EAVN) is the international VLBI facility in East Asia and is conducted in collaboration with China, Japan, and Korea. The EAVN consists of VLBI arrays operated in each East Asian country, containing 21 radio telescopes and three correlators. The EAVN will be mainly operated at 6.7 (C-band), 8 (X-band), 22 (K-band), and 43 GHz (Q-band), although the EAVN has an ability to conduct observations at 1.6 - 129 GHz. We have conducted fringe test observations eight times to date at 8 and 22 GHz and fringes have been successfully detected at both frequencies. We have also conducted science commissioning observations of 6.7 GHz methanol masers in massive star-forming regions. The EAVN will be operational from the second half of 2017, providing complementary results with the FAST on AGNs, massive star-forming regions, and evolved stars with high angular resolution at cm- to mm-wavelengths.Comment: 6 pages, 3 figures, 2 tables. To appear in the proceedings of "Frontiers in Radio Astronomy and FAST Early Sciences Symposium 2015" ed. Lei Qian (ASP Conf. Ser.
    corecore