85 research outputs found

    Editorial: Malaria diagnosis

    Get PDF
    No Abstract East African Medical Journal Vol.82(3) 2005: 110-11

    A randomized, open-label, comparative efficacy trial of artemether-lumefantrine suspension versus artemether-lumefantrine tablets for treatment of uncomplicated Plasmodium falciparum malaria in children in western Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artemether/lumefantrine (AL) has been adopted as the treatment of choice for uncomplicated malaria in Kenya and other countries in the region. Six-dose artemether/lumefantrine tablets are highly effective and safe for the treatment of infants and children weighing between five and 25 kg with uncomplicated <it>Plasmodium falciparum </it>malaria. However, oral paediatric formulations are urgently needed, as the tablets are difficult to administer to young children, who cannot swallow whole tablets or tolerate the bitter taste of the crushed tablets.</p> <p>Methods</p> <p>A randomized, controlled, open-label trial was conducted comparing day 28 PCR corrected cure-rates in 245 children aged 6–59 months, treated over three days with either six-dose of artemether/lumefantrine tablets (Coartem<sup>®</sup>) or three-dose of artemether/lumefantrine suspension (Co-artesiane<sup>®</sup>) for uncomplicated falciparum malaria in western Kenya. The children were followed-up with clinical, parasitological and haematological evaluations over 28 days.</p> <p>Results</p> <p>Ninety three percent (124/133) and 90% (121/134) children in the AL tablets and AL suspension arms respectively completed followed up. A per protocol analysis revealed a PCR-corrected parasitological cure rate of 96.0% at Day 28 in the AL tablets group and 93.4% in the AL suspension group, p = 0.40. Both drugs effectively cleared gametocytes and were well tolerated, with no difference in the overall incidence of adverse events.</p> <p>Conclusion</p> <p>The once daily three-dose of artemether-lumefantrine suspension (Co-artesiane<sup>®</sup>) was not superior to six-dose artemether-lumefantrine tablets (Coartem<sup>®</sup>) for the treatment of uncomplicated malaria in children below five years of age in western Kenya.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT00529867</p

    Implementation of a structured paediatric admission record for district hospitals in Kenya – results of a pilot study

    Get PDF
    BACKGROUND: The structured admission form is an apparently simple measure to improve data quality. Poor motivation, lack of supervision, lack of resources and other factors are conceivably major barriers to their successful use in a Kenyan public hospital setting. Here we have examined the feasibility and acceptability of a structured paediatric admission record (PAR) for district hospitals as a means of improving documentation of illness. METHODS: The PAR was primarily based on symptoms and signs included in the Integrated Management of Childhood Illness (IMCI) diagnostic algorithms. It was introduced with a three-hour training session, repeated subsequently for those absent, aiming for complete coverage of admitting clinical staff. Data from consecutive records before (n = 163) and from a 60% random sample of dates after intervention (n = 705) were then collected to evaluate record quality. The post-intervention period was further divided into four 2-month blocks by open, feedback meetings for hospital staff on the uptake and completeness of the PAR. RESULTS: The frequency of use of the PAR increased from 50% in the first 2 months to 84% in the final 2 months, although there was significant variation in use among clinicians. The quality of documentation also improved considerably over time. For example documentation of skin turgor in cases of diarrhoea improved from 2% pre-intervention to 83% in the final 2 months of observation. Even in the area of preventive care documentation of immunization status improved from 1% of children before intervention to 21% in the final 2 months. CONCLUSION: The PAR was well accepted by most clinicians and greatly improved documentation of features recommended by IMCI for identifying and classifying severity of common diseases. The PAR could provide a useful platform for implementing standard referral care treatment guidelines

    Pentoxifylline as an adjunct therapy in children with cerebral malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pentoxifylline (PTX) affects many processes that may contribute to the pathogenesis of severe malaria and it has been shown to reduce the duration of coma in children with cerebral malaria. This pilot study was performed to assess pharmacokinetics, safety and efficacy of PTX in African children with cerebral malaria.</p> <p>Methods</p> <p>Ten children admitted to the high dependency unit of the Kilifi District Hospital in Kenya with cerebral malaria (Blantyre coma score of 2 or less) received quinine plus a continuous infusion of 10 mg/kg/24 hours PTX for 72 hours. Five children were recruited as controls and received normal saline instead of PTX. Plasma samples were taken for PTX and tumour necrosis factor (TNF) levels. Blantyre Coma Score, parasitemia, hematology and vital signs were assessed 4 hourly.</p> <p>Results</p> <p>One child (20%) in the control group died, compared to four children (40%) in the PTX group. This difference was not significant (p = 0.60). Laboratory parameters and clinical data were comparable between groups. TNF levels were lower in children receiving PTX.</p> <p>Conclusions</p> <p>The small sample size does not permit definitive conclusions, but the mortality rate was unexpectedly high in the PTX group.</p

    Anaemia in a phase 2 study of a blood stage falciparum malaria vaccine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A Phase 1-2b study of the blood stage malaria vaccine AMA1-C1/Alhydrogel was conducted in 336 children in Donéguébougou and Bancoumana, Mali. In the Phase 2 portion of the study (n = 300), no impact on parasite density or clinical malaria was seen; however, children who received the study vaccine had a higher frequency of anaemia (defined as haemoglobin < 8.5 g/dL) compared to those who received the comparator vaccine (Hiberix). This effect was one of many tested and was not significant after adjusting for multiple comparisons.</p> <p>Methods</p> <p>To further investigate the possible impact of vaccination on anaemia, additional analyses were conducted including patients from the Phase 1 portion of the study and controlling for baseline haemoglobin, haemoglobin types S or C, alpha-thalassaemia, G6PD deficiency, and age. A multiplicative intensity model was used, which generalizes Cox regression to allow for multiple events. Frailty effects for each subject were used to account for correlation of multiple anaemia events within the same subject. Intensity rates were calculated with reference to calendar time instead of time after randomization in order to account for staggered enrollment and seasonal effects of malaria incidence. Associations of anaemia with anti-AMA1 antibody were further explored using a similar analysis.</p> <p>Results</p> <p>A strong effect of vaccine on the incidence of anaemia (risk ratio [AMA1-C1 to comparator (Hiberix)]= 2.01, 95% confidence interval [1.26,3.20]) was demonstrated even after adjusting for baseline haemoglobin, haemoglobinopathies, and age, and using more sophisticated statistical models. Anti-AMA1 antibody levels were not associated with this effect.</p> <p>Conclusions</p> <p>While these additional analyses show a robust effect of vaccination on anaemia, this is an intensive exploration of secondary results and should, therefore, be interpreted with caution. Possible mechanisms of the apparent adverse effect on haemoglobin of vaccination with AMA1-C1/Alhydrogel and implications for blood stage vaccine development are discussed. The potential impact on malaria-associated anaemia should be closely evaluated in clinical trials of AMA1 and other blood stage vaccines in malaria-exposed populations.</p

    Predictors of anti-convulsant treatment failure in children presenting with malaria and prolonged seizures in Kampala, Uganda

    Get PDF
    BACKGROUND: In endemic areas, falciparum malaria remains the leading cause of seizures in children presenting to emergency departments. In addition, seizures in malaria have been shown to increase morbidity and mortality in these patients. The management of seizures in malaria is sometimes complicated by the refractory nature of these seizures to readily available anti-convulsants. The objective of this study was to determine predictors of anti-convulsant treatment failure and seizure recurrence after initial control among children with malaria. METHODS: In a previous study, the efficacy and safety of buccal midazolam was compared to that of rectal diazepam in the treatment of prolonged seizures in children aged three months to 12 years in Kampala, Uganda. For this study, predictive models were used to determine risk factors for anti-convulsant treatment failure and seizure recurrence among the 221 of these children with malaria. RESULTS: Using predictive models, focal seizures (OR 3.21; 95% CI 1.42-7.25, p = 0.005), cerebral malaria (OR 2.43; 95% CI 1.20-4.91, p = 0.01) and a blood sugar >or=200 mg/dl at presentation (OR 2.84; 95% CI 1.11-7.20, p = 0.02) were independent predictors of treatment failure (seizure persistence beyond 10 minutes or recurrence within one hour of treatment). Predictors of seizure recurrence included: 1) cerebral malaria (HR 3.32; 95% CI 1.94-5.66, p < 0.001), 2) presenting with multiple seizures (HR 2.45; 95% CI 1.42-4.23, p = 0.001), 3) focal seizures (HR 2.86; 95% CI 1.49-5.49, p = 0.002), 4) recent use of diazepam (HR 2.43; 95% CI 1.19-4.95, p = 0.01) and 5) initial control of the seizure with diazepam (HR 1.96; 95% CI 1.16-3.33, p = 0.01). CONCLUSION: Specific predictors, including cerebral malaria, can identify patients with malaria at risk of anti-convulsant treatment failure and seizure recurrence

    A Randomized Controlled Phase Ib Trial of the Malaria Vaccine Candidate GMZ2 in African Children

    Get PDF
    BACKGROUND: GMZ2 is a fusion protein of Plasmodium falciparum merozoite surface protein 3 (MSP3) and glutamate rich protein (GLURP) that mediates an immune response against the blood stage of the parasite. Two previous phase I clinical trials, one in naïve European adults and one in malaria-exposed Gabonese adults showed that GMZ2 was well tolerated and immunogenic. Here, we present data on safety and immunogenicity of GMZ2 in one to five year old Gabonese children, a target population for future malaria vaccine efficacy trials. METHODOLOGY/PRINCIPAL FINDINGS: Thirty children one to five years of age were randomized to receive three doses of either 30 µg or 100 µg of GMZ2, or rabies vaccine. GMZ2, adjuvanted in aluminum hydroxide, was administered on Days 0, 28 and 56. All participants received a full course of their respective vaccination and were followed up for one year. Both 30 µg and 100 µg GMZ2 vaccine doses were well tolerated and induced antibodies and memory B-cells against GMZ2 as well as its antigenic constituents MSP3 and GLURP. After three doses of vaccine, the geometric mean concentration of antibodies to GMZ2 was 19-fold (95%CI: 11,34) higher in the 30 µg GMZ2 group than in the rabies vaccine controls, and 16-fold (7,36) higher in the 100 µg GMZ2 group than the rabies group. Geometric mean concentration of antibodies to MSP3 was 2.7-fold (1.6,4.6) higher in the 30 µg group than in the rabies group and 3.8-fold (1.5,9.6) higher in the 100 µg group. Memory B-cells against GMZ2 developed in both GMZ2 vaccinated groups. CONCLUSIONS/SIGNIFICANCE: Both 30 µg as well as 100 µg intramuscular GMZ2 are immunogenic, well tolerated, and safe in young, malaria-exposed Gabonese children. This result confirms previous findings in naïve and malaria-exposed adults and supports further clinical development of GMZ2. TRIAL REGISTRATION: ClinicalTrials.gov NCT00703066

    Identification of two new protective pre-erythrocytic malaria vaccine antigen candidates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite years of effort, a licensed malaria vaccine is not yet available. One of the obstacles facing the development of a malaria vaccine is the extensive heterogeneity of many of the current malaria vaccine antigens. To counteract this antigenic diversity, an effective malaria vaccine may need to elicit an immune response against multiple malaria antigens, thereby limiting the negative impact of variability in any one antigen. Since most of the malaria vaccine antigens that have been evaluated in people have not elicited a protective immune response, there is a need to identify additional protective antigens. In this study, the efficacy of three pre-erythrocytic stage malaria antigens was evaluated in a <it>Plasmodium yoelii</it>/mouse protection model.</p> <p>Methods</p> <p>Mice were immunized with plasmid DNA and vaccinia virus vectors that expressed one, two or all three <it>P. yoelii </it>vaccine antigens. The immunized mice were challenged with 300 <it>P. yoelii </it>sporozoites and evaluated for subsequent infection.</p> <p>Results</p> <p>Vaccines that expressed any one of the three antigens did not protect a high percentage of mice against a <it>P. yoelii </it>challenge. However, vaccines that expressed all three antigens protected a higher percentage of mice than a vaccine that expressed PyCSP, the most efficacious malaria vaccine antigen. Dissection of the multi-antigen vaccine indicated that protection was primarily associated with two of the three <it>P. yoelii </it>antigens. The protection elicited by a vaccine expressing these two antigens exceeded the sum of the protection elicited by the single antigen vaccines, suggesting a potential synergistic interaction.</p> <p>Conclusions</p> <p>This work identifies two promising malaria vaccine antigen candidates and suggests that a multi-antigen vaccine may be more efficacious than a single antigen vaccine.</p
    corecore