558 research outputs found

    Local formation of nitrogen-vacancy centers in diamond by swift heavy ions

    Full text link
    We exposed nitrogen-implanted diamonds to beams of swift uranium and gold ions (~1 GeV) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV- centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV- yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV-center formation by swift heavy ions such as electronic excitations and thermal spikes. While forming NV centers with low efficiency, swift heavy ions enable the formation of three dimensional NV- assemblies over relatively large distances of tens of micrometers. Further, our results show that NV-center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.Comment: to be published in Journal of Applied Physic

    Calibration of frictional forces in atomic force microscopy

    Get PDF
    The atomic force microscope can provide information on the atomic-level frictional properties of surfaces, but reproducible quantitative measurements are difficult to obtain. Parameters that are either unknown or difficult to precisely measure include the normal and lateral cantilever force constants (particularly with microfabricated cantilevers), the tip height, the deflection sensor response, and the tip structure and composition at the tip-surface contact. We present an in situ experimental procedure to determine the response of a cantilever to lateral forces in terms of its normal force response. This procedure is quite general. It will work with any type of deflection sensor and does not require the knowledge or direct measurement of the lever dimensions or the tip height. In addition, the shape of the tip apex can be determined. We also discuss a number of specific issues related to force and friction measurements using optical lever deflection sensing. We present experimental results on the lateral force response of commercially available V-shaped cantilevers. Our results are consistent with estimates of lever mechanical properties using continuum elasticity theory

    Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy

    Get PDF
    We present a technique to measure the lateral stiffness of the nanometer-sized contact formed between a friction force microscope tip and a sample surface. Since the lateral stiffness of an elastic contact is proportional to the contact radius, this measurement can be used to study the relationship between friction, load, and contact area. As an example, we measure the lateral stiffness of the contact between a silicon nitride tip and muscovite mica in a humid atmosphere (55% relative humidity) as a function of load. Comparison with friction measurements confirms that friction is proportional to contact area and allows determination of the shear strength

    Cathodoluminescence-based nanoscopic thermometry in a lanthanide-doped phosphor

    Get PDF
    Crucial to analyze phenomena as varied as plasmonic hot spots and the spread of cancer in living tissue, nanoscale thermometry is challenging: probes are usually larger than the sample under study, and contact techniques may alter the sample temperature itself. Many photostable nanomaterials whose luminescence is temperature-dependent, such as lanthanide-doped phosphors, have been shown to be good non-contact thermometric sensors when optically excited. Using such nanomaterials, in this work we accomplished the key milestone of enabling far-field thermometry with a spatial resolution that is not diffraction-limited at readout. We explore thermal effects on the cathodoluminescence of lanthanide-doped NaYF4_4 nanoparticles. Whereas cathodoluminescence from such lanthanide-doped nanomaterials has been previously observed, here we use quantitative features of such emission for the first time towards an application beyond localization. We demonstrate a thermometry scheme that is based on cathodoluminescence lifetime changes as a function of temperature that achieves ∼\sim 30 mK sensitivity in sub-μ\mum nanoparticle patches. The scheme is robust against spurious effects related to electron beam radiation damage and optical alignment fluctuations. We foresee the potential of single nanoparticles, of sheets of nanoparticles, and also of thin films of lanthanide-doped NaYF4_4 to yield temperature information via cathodoluminescence changes when in the vicinity of a sample of interest; the phosphor may even protect the sample from direct contact to damaging electron beam radiation. Cathodoluminescence-based thermometry is thus a valuable novel tool towards temperature monitoring at the nanoscale, with broad applications including heat dissipation in miniaturized electronics and biological diagnostics.Comment: Main text: 30 pages + 4 figures; supplementary information: 22 pages + 8 figure

    Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope

    Get PDF
    We have studied the variation of frictional force with externally applied load for a Pt-coated atomic force microscope tip in contact with the surface of mica cleaved in ultrahigh vacuum. At low loads, the frictional force varies with load in almost exact proportion to the area of contact as predicted by the Johnson-Kendall-Roberts (JKR) theory [K. L. Johnson, K. Kendall, and A. D. Roberts, Proc. R. Sec. London Ser. A 324, 301 (1971)] of elastic adhesive contacts. The friction-load relation for a deliberately modified tip shape was proportional to an extended JKR model that predicts the area-load relation for nonparabolic tips, The tip shape was determined experimentally with a tip imaging technique and was consistent with the predicted friction behavior. This demonstrates that the frictional force is proportional to the area of contact between the tip and sample. Using the JKR/extended JKR model, interfacial surface energies and shear strengths can be estimated

    The Relationship Between Elementary Teachers’ Beliefs About Diversity and and Their Selections of Multicultural Materials

    Get PDF
    The purpose of this research was to understand the relationship between urban elementary teachers’ beliefs about diversity and their selection of literacy material for instructional practices in their classrooms. Currently, the teacher population is essentially homogenous, consisting of a majority of middle-class White females, while the student population is growing more diverse. Teachers’ instructional decisions tend to reflect their own cultural background and not the cultural background of the diverse student population. This study examined urban teachers’ personal and professional beliefs about diversity and found that gender was a factor in the teachers’ diversity scores. The review of children’s literature listed by the teachers further revealed that there was a lack of representation of characters of color in the teachers’ classrooms. Finally, teachers that scored high on the diversity scale had more multicultural literature available in their classrooms

    Influence of carrier density on the friction properties of silicon pn junctions

    Get PDF
    We present experimental results showing a significant dependence of the friction force on charge carrier concentration in a Si semiconductor sample containing p- andn-type regions. The carrier concentration was controlled through application of forward or reverse bias voltages in the p and n regions that caused surface band bending in opposite directions. Excess friction is observed only in the highly doped p regions when in strong accumulation. The excess friction increases with tip-sample voltage, contact strain, and velocity. The sample is an oxide-passivated Si (100) wafer patterned with arrays of 2-μm-wide highly doped p-type strips with a period of 30 μm in a nearly intrinsic n-type substrate. The countersurface is the tip of an atomic force microscope coated with conductive titanium nitride. The excess friction is not associated with wear or damage of the surface. The results demonstrate the possibility of electronically controlling friction in semiconductor devices, with potential applications in nanoscale machines containing moving parts

    A variable temperature ultrahigh vacuum atomic force microscope

    Get PDF
    A new atomic force microscope (AFM) that operates in ultrahigh vacuum (UHV) is described. The sample is held fixed with spring clamps while the AMF cantilever and deflection sensor are scanned above it. Thus, the sample is easily coupled to a liquid nitrogen cooled thermal reservoir which allows AFM operation from ≈ 100 K to room temperature. AFM operation above room temperature is also possible. The microscope head is capable of coarse x-y positioning over millimeter distances so that AFM images can be taken virtually anywhere upon a macroscopic sample. The optical beam deflection scheme is used for detection, allowing simultaneous normal and lateral force measurements. The sample can be transferred from the AFM stage to a low energy electron diffraction/Auger electron spectrometer stage for surface analysis. Atomic lattice resolution AFM images taken in UHV are presented at 110, 296, and 430 K
    • …
    corecore