283 research outputs found

    Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress

    Get PDF
    Data-driven modeling was used to analyze the complex signaling dynamics that connect DNA repair with cell survival, cell-cycle arrest, or apoptosis. This analysis revealed an unexpected role for Erk in G1/S arrest and apoptotic cell death following doxorubicin-induced DNA damage

    Evolutionary relationships among barley and <i>Arabidopsis</i> core circadian clock and clock-associated genes

    Get PDF
    The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00239-015-9665-0) contains supplementary material, which is available to authorized users

    Mudanças nos compostos bioativos e atividade antioxidante de pimentas da região amazônica.

    Get PDF
    A Embrapa Amazônia Oriental possui um Banco Ativo de Pimenteira com diferentes genótipos do gênero Capsicum, os quais ainda não foram analisados, quanto às suas características funcionais e capacidade antioxidante. Este estudo objetivou determinar os teores de ácido ascórbico, compostos fenólicos, carotenoides totais e a atividade antioxidante total, em frutos imaturos e maduros de genótipos de pimentas Capsicum spp. As concentrações de vitamina C (100,76-361,65 mg 100 g-1 nos frutos imaturos e 36,70-157,76 mg 100 g-1 nos maduros) decresceram com a maturação dos frutos. Carotenoides totais não foram detectados nos frutos imaturos, porém, nos frutos maduros, observaram-se valores de 73,80-1349,97 mg g-1, em função do genótipo. Os teores de compostos fenólicos aumentaram nos frutos maduros (147,40-718,64 mg GAE 100 g-1), para oito dos nove genótipos avaliados. Os frutos de pimenteira apresentaram significativa atividade antioxidante (55,02-92,03 mM trolox g-1 nos frutos imaturos e 39,60-113,08 mM trolox g- 1 nos maduros). Concluiu-se que o grau de maturação dos frutos influenciou nos teores de compostos bioativos dos genótipos estudados. Destacaram-se, como genótipos promissores com potencial para serem utilizados em programas de melhoramento genético, IAN-186301 e IAN-186324, pelos altos teores de carotenoides totais; IAN-186301, IAN-186311, IAN-186312 e IAN-186313, com relação às altas concentrações de ácido ascórbico; IAN-186304 e IAN-186311, pelos altos teores de compostos fenólicos; e IAN-186311, para atividade antioxidante

    EEG Markers in Emotionally Unstable Personality Disorder-A Possible Outcome Measure for Neurofeedback: A Narrative Review.

    Get PDF
    Objectives. There is growing evidence for the use of biofeedback (BF) in affective disorders, dissocial personality disorder, and in children with histories of abuse. Electroencephalogram (EEG) markers could be used as neurofeedback in emotionally unstable personality disorder (EUPD) management especially for those at high risk of suicide when emotionally aroused. This narrative review investigates the evidence for EEG markers in EUPD. Methods. PRISMA guidelines were used to conduct a narrative review. A structured search method was developed and implemented in collaboration with an information specialist. Studies were identified via 3 electronic database searches of MEDLINE, Embase, and PsycINFO. A predesigned inclusion/exclusion criterion was applied to selected papers. A thematic analysis approach with 5 criteria was used. Results. From an initial long list of 5250 papers, 229 studies were identified and screened, of which 44 met at least 3 of the predesigned inclusion criteria. No research to date investigates EEG-based neurofeedback in EUPD. A number of different EEG biomarkers are identified but there is poor consistency between studies. Conclusions. The findings heterogeneity may be due to the disorder complexity and the variable EEG related parameters studied. An alternative explanation may be that there are a number of different neuromarkers, which could be clustered together with clinical symptomatology, to give new subdomains. Quantitative EEGs in particular may be helpful to identify more specific abnormalities. EEG standardization of neurofeedback protocols based on specific EEG abnormalities detected may facilitate targeted use of neurofeedback as an intervention in EUPD

    Mitochondrial complex I and cell death: a semi-automatic shotgun model

    Get PDF
    Mitochondrial dysfunction often leads to cell death and disease. We can now draw correlations between the dysfunction of one of the most important mitochondrial enzymes, NADH:ubiquinone reductase or complex I, and its structural organization thanks to the recent advances in the X-ray structure of its bacterial homologs. The new structural information on bacterial complex I provide essential clues to finally understand how complex I may work. However, the same information remains difficult to interpret for many scientists working on mitochondrial complex I from different angles, especially in the field of cell death. Here, we present a novel way of interpreting the bacterial structural information in accessible terms. On the basis of the analogy to semi-automatic shotguns, we propose a novel functional model that incorporates recent structural information with previous evidence derived from studies on mitochondrial diseases, as well as functional bioenergetics

    Predicting the F(ab)-mediated effect of monoclonal antibodies in vivo by combining cell-level kinetic and pharmacokinetic modelling

    Get PDF
    Cell-level kinetic models for therapeutically relevant processes increasingly benefit the early stages of drug development. Later stages of the drug development processes, however, rely on pharmacokinetic compartment models while cell-level dynamics are typically neglected. We here present a systematic approach to integrate cell-level kinetic models and pharmacokinetic compartment models. Incorporating target dynamics into pharmacokinetic models is especially useful for the development of therapeutic antibodies because their effect and pharmacokinetics are inherently interdependent. The approach is illustrated by analysing the F(ab)-mediated inhibitory effect of therapeutic antibodies targeting the epidermal growth factor receptor. We build a multi-level model for anti-EGFR antibodies by combining a systems biology model with in vitro determined parameters and a pharmacokinetic model based on in vivo pharmacokinetic data. Using this model, we investigated in silico the impact of biochemical properties of anti-EGFR antibodies on their F(ab)-mediated inhibitory effect. The multi-level model suggests that the F(ab)-mediated inhibitory effect saturates with increasing drug-receptor affinity, thereby limiting the impact of increasing antibody affinity on improving the effect. This indicates that observed differences in the therapeutic effects of high affinity antibodies in the market and in clinical development may result mainly from Fc-mediated indirect mechanisms such as antibody-dependent cell cytotoxicity

    Lipidomics: A Tool for Studies of Atherosclerosis

    Get PDF
    Lipids, abundant constituents of both the vascular plaque and lipoproteins, play a pivotal role in atherosclerosis. Mass spectrometry-based analysis of lipids, called lipidomics, presents a number of opportunities not only for understanding the cellular processes in health and disease but also in enabling personalized medicine. Lipidomics in its most advanced form is able to quantify hundreds of different molecular lipid species with various structural and functional roles. Unraveling this complexity will improve our understanding of diseases such as atherosclerosis at a level of detail not attainable with classical analytical methods. Improved patient selection, biomarkers for gauging treatment efficacy and safety, and translational models will be facilitated by the lipidomic deliverables. Importantly, lipid-based biomarkers and targets should lead the way as we progress toward more specialized therapeutics
    corecore