2,414 research outputs found

    The response of a turbulent accretion disc to an imposed epicyclic shearing motion

    Get PDF
    We excite an epicyclic motion, whose amplitude depends on the vertical position, zz, in a simulation of a turbulent accretion disc. An epicyclic motion of this kind may be caused by a warping of the disc. By studying how the epicyclic motion decays we can obtain information about the interaction between the warp and the disc turbulence. A high amplitude epicyclic motion decays first by exciting inertial waves through a parametric instability, but its subsequent exponential damping may be reproduced by a turbulent viscosity. We estimate the effective viscosity parameter, αv\alpha_{\rm v}, pertaining to such a vertical shear. We also gain new information on the properties of the disc turbulence in general, and measure the usual viscosity parameter, αh\alpha_{\rm h}, pertaining to a horizontal (Keplerian) shear. We find that, as is often assumed in theoretical studies, αv\alpha_{\rm v} is approximately equal to αh\alpha_{\rm h} and both are much less than unity, for the field strengths achieved in our local box calculations of turbulence. In view of the smallness (∼0.01\sim 0.01) of αv\alpha_{\rm v} and αh\alpha_{\rm h} we conclude that for β=pgas/pmag∼10\beta = p_{\rm gas}/p_{\rm mag} \sim 10 the timescale for diffusion or damping of a warp is much shorter than the usual viscous timescale. Finally, we review the astrophysical implications.Comment: 12 pages, 18 figures, MNRAS accepte

    Magnetohydrodynamic turbulence in warped accretion discs

    Get PDF
    Warped, precessing accretion discs appear in a range of astrophysical systems, for instance the X-ray binary Her X-1 and in the active nucleus of NGC4258. In a warped accretion disc there are horizontal pressure gradients that drive an epicyclic motion. We have studied the interaction of this epicyclic motion with the magnetohydrodynamic turbulence in numerical simulations. We find that the turbulent stress acting on the epicyclic motion is comparable in size to the stress that drives the accretion, however an important ingredient in the damping of the epicyclic motion is its parametric decay into inertial waves.Comment: to appear in the proceedings of the 20th Texas Symposium on Relativistic Astrophysics, J. C. Wheeler & H. Martel (eds.

    The Shape of an Accretion Disc in a Misaligned Black Hole Binary

    Full text link
    We model the overall shape of an accretion disc in a semi-detached binary system in which mass is transfered on to a spinning black hole the spin axis of which is misaligned with the orbital rotation axis. We assume the disc is in a steady state. Its outer regions are subject to differential precession caused by tidal torques of the companion star. These tend to align the outer parts of the disc with the orbital plane. Its inner regions are subject to differential precession caused by the Lense-Thirring effect. These tend to align the inner parts of the disc with the spin of the black hole. We give full numerical solutions for the shape of the disc for some particular disc parameters. We then show how an analytic approximation to these solutions can be obtained for the case when the disc surface density varies as a power law with radius. These analytic solutions for the shape of the disc are reasonably accurate even for large misalignments and can be simply applied for general disc parameters. They are particularly useful when the numerical solutions would be slow.Comment: Accepted for publication in MNRA

    Fundamental length in quantum theories with PT-symmetric Hamiltonians II: The case of quantum graphs

    Full text link
    Manifestly non-Hermitian quantum graphs with real spectra are introduced and shown tractable as a new class of phenomenological models with several appealing descriptive properties. For illustrative purposes, just equilateral star-graphs are considered here in detail, with non-Hermiticities introduced by interactions attached to the vertices. The facilitated feasibility of the analysis of their spectra is achieved via their systematic approximative Runge-Kutta-inspired reduction to star-shaped discrete lattices. The resulting bound-state spectra are found real in a discretization-independent interval of couplings. This conclusion is reinterpreted as the existence of a hidden Hermiticity of our models, i.e., as the standard and manifest Hermiticity of the underlying Hamiltonian in one of less usual, {\em ad hoc} representations Hj{\cal H}_j of the Hilbert space of states in which the inner product is local (at j=0j=0) or increasingly nonlocal (at j=1,2,...j=1,2, ...). Explicit examples of these (of course, Hamiltonian-dependent) hermitizing inner products are offered in closed form. In this way each initial quantum graph is assigned a menu of optional, non-equivalent standard probabilistic interpretations exhibiting a controlled, tunable nonlocality.Comment: 33 pp., 6 figure

    Turbulence and angular momentum transport in a global accretion disk simulation

    Get PDF
    The global development of magnetohydrodynamic turbulence in an accretion disk is studied within a simplified disk model that omits vertical stratification. Starting with a weak vertical seed field, a saturated state is obtained after a few tens of orbits in which the energy in the predominantly toroidal magnetic field is still subthermal. The efficiency of angular momentum transport, parameterized by the Shakura-Sunyaev alpha parameter, is of the order of 0.1. The dominant contribution to alpha comes from magnetic stresses, which are enhanced by the presence of weak net vertical fields. The power spectra of the magnetic fields are flat or decline only slowly towards the largest scales accessible in the calculation, suggesting that the viscosity arising from MHD turbulence may not be a locally determined quantity. I discuss how these results compare with observationally inferred values of alpha, and possible implications for models of jet formation.Comment: ApJ Letters, in press. The paper and additional visualizations are available at http://www.cita.utoronto.ca/~armitage/global_abs.htm

    Interaction of the solar wind with Venus

    Get PDF
    Two topics related to the interaction of the solar wind with Venus are considered. First, a short review of the experimental evidence with particular attention to plasma measurements carried out on Mariner-5 and Mariner-10 is given. Secondly, the results of some recent theoretical work on the interaction of the solar wind with the ionosphere of Venus are summarized

    Aligning spinning black holes and accretion discs

    Full text link
    We consider the alignment torque between a spinning black hole and an accretion disc whose angular momenta are misaligned. This situation must hold initially in almost all gas accretion events on to supermassive black holes, and may occur in binaries where the black hole receives a natal supernova kick. We show that the torque always acts to align the hole's spin with the total angular momentum without changing its magnitude. The torque acts dissipatively on the disc, reducing its angular momentum, and aligning it with the hole if and only if the angle theta between the angular momenta J_d of the disc and J_h of the hole satisfies the inequality cos theta > -J_d / 2 J_h. If this condition fails, which requires both theta > pi/2 and J_d < 2 J_h, the disc counteraligns.Comment: MNRAS, in pres

    Viscous Effects on the Interaction between the Coplanar Decretion Disc and the Neutron Star in Be/X-Ray Binaries

    Full text link
    We study the viscous effects on the interaction between the coplanar Be-star disc and the neutron star in Be/X-ray binaries, using a three-dimensional, smoothed particle hydrodynamics code. For simplicity, we assume the Be disc to be isothermal at the temperature of half the stellar effective temperature. In order to mimic the gas ejection process from the Be star, we inject particles with the Keplerian rotation velocity at a radius just outside the star. Both Be star and neutron star are treated as point masses. We find that the Be-star disc is effectively truncated if the Shakura-Sunyaev viscosity parameter alpha_SS >> 1, which confirms the previous semi-analytical result. In the truncated disc, the material decreted from the Be star accumulates, so that the disc becomes denser more rapidly than if around an isolated Be star. The resonant truncation of the Be disc results in a significant reduction of the amount of gas captured by the neutron star and a strong dependence of the mass capture rate on the orbital phase. We also find that an eccentric mode is excited in the Be disc through direct driving due to a one-armed bar potential of the binary. The strength of the mode becomes greater in the case of a smaller viscosity. In a high-resolution simulation with alpha_SS=0.1, the eccentric mode is found to precess in a prograde sense. The mass capture rate by the neutron star modulates as the mode precesses.Comment: 15 pages, including 20 figures and 1 table, accepted for publication in MNRA

    An alpha theory of time-dependent warped accretion discs

    Get PDF
    The non-linear fluid dynamics of a warped accretion disc was investigated in an earlier paper by developing a theory of fully non-linear bending waves in a thin, viscous disc. That analysis is here extended to take proper account of thermal and radiative effects by solving an energy equation that includes viscous dissipation and radiative transport. The problem is reduced to simple one-dimensional evolutionary equations for mass and angular momentum, expressed in physical units and suitable for direct application. This result constitutes a logical generalization of the alpha theory of Shakura & Sunyaev to the case of a time-dependent warped accretion disc. The local thermal-viscous stability of such a disc is also investigated.Comment: 16 pages, 3 figures, to be published in MNRA

    Discussion of Recent Decisions

    Get PDF
    • …
    corecore