38 research outputs found

    Forcible intra-arterial injection of a non-adhesive liquid embolic agent under micro-balloon occlusion: experimental study in swine liver

    Get PDF
    13301甲第3996号博士(医学)金沢大学博士論文本文Full 以下に掲載:Journal of Vascular and Interventional Radiology 25(4) pp.579-585 2014. ELSEVIER. 共著者:Takahiro Ogi, Osamu Matsui, Junichiro Sanada, Tetsuya Minami, Kazuto Kozaka, Dai Inoue

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    Hitomi (ASTRO-H) X-ray Astronomy Satellite

    Get PDF
    The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E  >  2  keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month

    Elastic anisotropy and incohesive bond of chemical-vapor-deposition diamond film: Acoustic resonance measurements and micromechanics modeling

    Full text link
    Nakamura N., Ogi H., Ichitsubo T., et al. "Elastic anisotropy and incohesive bond of chemical-vapor-deposition diamond film: Acoustic resonance measurements and micromechanics modeling", Journal of Applied Physics, 94(10), 6405-6410 (2003) https://doi.org/10.1063/1.1620376

    Imaged periductal infiltration: Diagnostic and prognostic role in intrahepatic mass-forming cholangiocarcinoma

    No full text
    Purpose: This study examines periductal infiltration in intrahepatic mass-forming cholangiocarcinoma (IMCC), focusing on its importance for differentiating hepatic tumors and its influence on post-surgical survival in IMCC patients. Methods: Eighty-three consecutive patients with IMCC (n = 43) and liver cancer whose preoperative images showed intrahepatic bile duct dilatation adjacent to the tumor for differential diagnosis from hepatocellular carcinoma (HCC) [n = 21], metastatic liver cancer (MLC) [n = 16] and combined hepatocellular-cholangiocarcinoma (cHCC-CC) [n = 3] were enrolled. CT and MRI findings of simple bile duct compression, imaged periductal infiltration, and imaged intrabiliary growth adjacent to the main tumor were reviewed. Clinicopathological and imaging features were compared in each group. The sensitivity, specificity, and odds ratio were calculated for each imaging finding of IMCC versus the other tumor groups. Overall survival was compared between cases of IMCC with and without imaged periductal infiltration. Results: Simple bile duct compression and imaged intrabiliary growth were more frequently observed in HCC than in the others (p < 0.0001 and 0.040, respectively). Imaged periductal infiltration was observed more often in histopathologically confirmed large-duct type IMCC than in the small-duct type IMCC (p = 0.034). Multivariable analysis demonstrated that only imaged periductal infiltration (odds ratio, 50.67) was independently correlated with IMCC. Patients with IMCC who had imaged periductal infiltration experienced a poorer prognosis than those without imaged periductal infiltration (p = 0.0034). Conclusion: Imaged periductal infiltration may serve as a significant marker for differentiating IMCC from other liver cancers. It may also have the potential to predict post-surgical outcomes in patients with IMCC

    Inducing multiple nicks promotes interhomolog homologous recombination to correct heterozygous mutations in somatic cells

    No full text
    Abstract CRISPR/Cas9-mediated gene editing has great potential utility for treating genetic diseases. However, its therapeutic applications are limited by unintended genomic alterations arising from DNA double-strand breaks and random integration of exogenous DNA. In this study, we propose NICER, a method for correcting heterozygous mutations that employs multiple nicks (MNs) induced by Cas9 nickase and a homologous chromosome as an endogenous repair template. Although a single nick near the mutation site rarely leads to successful gene correction, additional nicks on homologous chromosomes strongly enhance gene correction efficiency via interhomolog homologous recombination (IH-HR). This process partially depends on BRCA1 and BRCA2, suggesting the existence of several distinct pathways for MN-induced IH-HR. According to a genomic analysis, NICER rarely induces unintended genomic alterations. Furthermore, NICER restores the expression of disease-causing genes in cells derived from genetic diseases with compound heterozygous mutations. Overall, NICER provides a precise strategy for gene correction
    corecore