510 research outputs found

    Power calculations for isentropic compressions of cryogenic nitrogen

    Get PDF
    A theoretical analysis has been made of the power required for isentropic compressions of cryogenic nitrogen in order to determine the extent that the drive power for cryogenic tunnels might be affected by real gas effects. The analysis covers temperatures from 80 to 310K, pressures from 1.0 to 8.8 atm and fan pressure ratios from 1.025 to 1.200. The power required to compress cryogenic nitrogen was found to be lower than that required for an ideal diatomic gas by as much as 9.5 percent. Simple corrections to the ideal gas values were found to give accurate estimates of the real gas power values

    Power calculations for isentropic compressions of cryogenic nitrogen

    Get PDF
    A theoretical analysis was made of the power required for isentropic compressions of cryogenic nitrogen in order to determine the extent to which the drive power for cryogenic tunnels might be affected by real-gas effects. The analysis covers temperatures from 80 to 310 K, pressures from 1.0 to 8.8 atm, and fan pressure ratios from 1.025 to 1.200. The power required to compress cryogenic nitrogen was found to be as much as 9.5 percent lower than that required to compress an ideal diatomic gas. Simple corrections to the ideal-gas values were found to give accurate estimates of the real-gas power values

    Exploratory piloted simulator study of the effects of winglets on handling qualities of a representative agricultural airplane

    Get PDF
    The effects on handling qualities of adding winglets to a representative agricultural aircraft configuration during swath-run maneuvering were evaluated. Aerodynamic data used in the simulation were based on low-speed wind tunnel tests of a full scale airplane and a subscale model. The Cooper-Harper handling qualities rating scale, supplementary pilot comments, and pilot vehicle performance data were used to describe the handling qualities of the airplane with the different wing-tip configurations. Results showed that the lateral-directional handling qualities of the airplane were greatly affected by the application of winglets and winglet cant angle. The airplane with winglets canted out 20 deg exhibited severely degraded lateral directional handling qualities in comparison to the basic airplane. When the winglets were canted inward 10 deg, the flying qualities of the configuration were markedly improved over those of the winglet-canted-out configuration or the basic configuration without winglets, indicating that proper tailoring of the winglet design may afford a potential benefit in the area of handling qualities

    Control-system techniques for improved departure/spin resistance for fighter aircraft

    Get PDF
    Some fundamental information on control system effects on controllability of highly maneuverable aircraft at high angles of attack are summarized as well as techniques for enhancing fighter aircraft departure/spin resistance using control system design. The discussion includes: (1) a brief review of pertinent high angle of attack phenomena including aerodynamics, inertia coupling, and kinematic coupling; (2) effects of conventional stability augmentation systems at high angles of attack; (3) high angle of attack control system concepts designed to enhance departure/spin resistance; and (4) the outlook for applications of these concepts to future fighters, particularly those designs which incorporate relaxed static stability

    Topological Quantum Computing with Only One Mobile Quasiparticle

    Full text link
    In a topological quantum computer, universal quantum computation is performed by dragging quasiparticle excitations of certain two dimensional systems around each other to form braids of their world lines in 2+1 dimensional space-time. In this paper we show that any such quantum computation that can be done by braiding nn identical quasiparticles can also be done by moving a single quasiparticle around n-1 other identical quasiparticles whose positions remain fixed.Comment: 4 pages, 5 figure

    Braid Topologies for Quantum Computation

    Full text link
    In topological quantum computation, quantum information is stored in states which are intrinsically protected from decoherence, and quantum gates are carried out by dragging particle-like excitations (quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories define world-lines in three dimensional space-time, and the corresponding quantum gates depend only on the topology of the braids formed by these world-lines. We show how to find braids that yield a universal set of quantum gates for qubits encoded using a specific kind of quasiparticle which is particularly promising for experimental realization.Comment: 4 pages, 4 figures, minor revision

    Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability

    Get PDF
    A real-time piloted simulation was conducted to evaluate the high-angle-of-attack characteristics of a fighter configuration based on wind-tunnel testing of the F-16, with particular emphasis on the effects of various levels of relaxed longitudinal static stability. The aerodynamic data used in the simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative low-speed combat maneuvering. Results of the investigation show that the airplane with the basic control system was resistant to the classical yaw departure; however, it was susceptible to pitch departures induced by inertia coupling during rapid, large-amplitude rolls at low airspeed. The airplane also exhibited a deep-stall trim which could be flown into and from which it was difficult to recover. Control-system modifications were developed which greatly decreased the airplane susceptibility to the inertia-coupling departure and which provided a reliable means for recovering from the deep stall

    Robustness of adiabatic quantum computation

    Get PDF
    We study the fault tolerance of quantum computation by adiabatic evolution, a quantum algorithm for solving various combinatorial search problems. We describe an inherent robustness of adiabatic computation against two kinds of errors, unitary control errors and decoherence, and we study this robustness using numerical simulations of the algorithm.Comment: 11 pages, 5 figures, REVTe

    Topological quantum memory

    Get PDF
    We analyze surface codes, the topological quantum error-correcting codes introduced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on a surface of nontrivial topology, and encoded quantum operations are associated with nontrivial homology cycles of the surface. We formulate protocols for error recovery, and study the efficacy of these protocols. An order-disorder phase transition occurs in this system at a nonzero critical value of the error rate; if the error rate is below the critical value (the accuracy threshold), encoded information can be protected arbitrarily well in the limit of a large code block. This phase transition can be accurately modeled by a three-dimensional Z_2 lattice gauge theory with quenched disorder. We estimate the accuracy threshold, assuming that all quantum gates are local, that qubits can be measured rapidly, and that polynomial-size classical computations can be executed instantaneously. We also devise a robust recovery procedure that does not require measurement or fast classical processing; however for this procedure the quantum gates are local only if the qubits are arranged in four or more spatial dimensions. We discuss procedures for encoding, measurement, and performing fault-tolerant universal quantum computation with surface codes, and argue that these codes provide a promising framework for quantum computing architectures.Comment: 39 pages, 21 figures, REVTe

    Measuring vertebrate telomeres: applications and limitations

    Get PDF
    Telomeres are short tandem repeated sequences of DNA found at the ends of eukaryotic chromosomes that function in stabilizing chromosomal end integrity. In vivo studies of somatic tissue of mammals and birds have shown a correlation between telomere length and organismal age within species, and correlations between telomere shortening rate and lifespan among species. This result presents the tantalizing possibility that telomere length could be used to provide much needed information on age, ageing and survival in natural populations where longitudinal studies are lacking. Here we review methods available for measuring telomere length and discuss the potential uses and limitations of telomeres as age and ageing estimators in the fields of vertebrate ecology, evolution and conservation
    • …
    corecore