161 research outputs found

    Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes

    Get PDF
    Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g−1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g−1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications

    GADD34 keeps the mTOR pathway inactivated in endoplasmic reticulum stress related autophagy

    Get PDF
    The balance of protein synthesis and proteolysis (i.e. proteostasis) is maintained by a complex regulatory network in which mTOR (mechanistic target of rapamycin serine/threonine kinase) pathway and unfolded protein response are prominent positive and negative actors. The interplay between the two systems has been revealed; however the mechanistic details of this crosstalk are largely unknown. The aim of the present study was to investigate the elements of crosstalk during endoplasmic reticulum stress and to verify the key role of GADD34 in the connection with the mTOR pathway. Here, we demonstrate that a transient activation of autophagy is present in endoplasmic reticulum stress provoked by thapsigargin or tunicamycin, which is turned into apoptotic cell death. The transient phase can be characterized by the elevation of the autophagic marker LC3II/I, by mTOR inactivation, AMP-activated protein kinase activation and increased GADD34 level. The switch from autophagy to apoptosis is accompanied with the appearance of apoptotic markers, mTOR reactivation, AMP-activated protein kinase inactivation and a decrease in GADD34. Inhibition of autophagy by 3-methyladenine shortens the transient phase, while inhibition of mTOR by rapamycin or resveratrol prolongs it. Inhibition of GADD34 by guanabenz or transfection of the cells with siGADD34 results in down-regulation of autophagy-dependent survival and a quick activation of mTOR, followed by apoptotic cell death. The negative effect of GADD34 inhibition is diminished when guanabenz or siGADD34 treatment is combined with rapamycin or resveratrol addition. These data confirm that GADD34 constitutes a mechanistic link between endoplasmic reticulum stress and mTOR inactivation, therefore promotes cell survival during endoplasmic reticulum stress. © 2016 Holczer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes

    Get PDF
    As fast-charging lithium-ion batteries turn into increasingly important components in forthcoming applications, various strategies have been devoted to the development of high-rate anodes. However, despite vigorous efforts, the low initial Coulombic efficiency and poor volumetric energy density with insufficient electrode conditions remain critical challenges that have to be addressed. Herein, we demonstrate a hybrid anode via incorporation of a uniformly implanted amorphous silicon nanolayer and edge-site-activated graphite. This architecture succeeds in improving lithium ion transport and minimizing initial capacity losses even with increase in energy density. As a result, the hybrid anode exhibits an exceptional initial Coulombic efficiency (93.8%) and predominant fast-charging behavior with industrial electrode conditions. As a result, a full-cell demonstrates a higher energy density (>= 1060 Wh l(-1)) without any trace of lithium plating at a harsh charging current density (10.2 mA cm(-2)) and 1.5 times faster charging than that of conventional graphite

    Effects of Protein Deficiency on Perinatal and Postnatal Health Outcomes

    Get PDF
    There are a variety of environmental insults that can occur during pregnancy which cause low birth weight and poor fetal health outcomes. One such insult is maternal malnutrition, which can be further narrowed down to a low protein diet during gestation. Studies show that perinatal protein deficiencies can impair proper organ growth and development, leading to long-term metabolic dysfunction. Understanding the molecular mechanisms that underlie how this deficiency leads to adverse developmental outcomes is essential for establishing better therapeuticstrategies that may alleviate or prevent diseases in later life. This chapter reviews how perinatal protein restriction in humans and animals leads to metabolic disease, and it identifies the mechanisms that have been elucidated, to date. These include alterations in transcriptional and epigenetic mechanisms, as well as indirect means such as endoplasmic reticulum (ER) stress and oxidative stress. Furthermore, nutritional and pharmaceutical interventions are highlighted to illustrate that the plasticity of the underdeveloped organs during perinatal life can be exploited to prevent onset of long-term metabolic disease

    Prominent Bone Loss Mediated by RANKL and IL-17 Produced by CD4+ T Cells in TallyHo/JngJ Mice

    Get PDF
    Increasing evidence that decreased bone density and increased rates of bone fracture are associated with abnormal metabolic states such as hyperglycemia and insulin resistance indicates that diabetes is a risk factor for osteoporosis. In this study, we observed that TallyHo/JngJ (TH) mice, a polygenic model of type II diabetes, spontaneously developed bone deformities with osteoporotic features. Female and male TH mice significantly gained more body weight than control C57BL/6 mice upon aging. Interestingly, bone density was considerably decreased in male TH mice, which displayed hyperglycemia. The osteoblast-specific bone forming markers osteocalcin and osteoprotegerin were decreased in TH mice, whereas osteoclast-driven bone resorption markers such as IL-6 and RANKL were significantly elevated in the bone marrow and blood of TH mice. In addition, RANKL expression was prominently increased in CD4+ T cells of TH mice upon T cell receptor stimulation, which was in accordance with enhanced IL-17 production. IL-17 production in CD4+ T cells was directly promoted by treatment with leptin while IFN-γ production was not. Moreover, blockade of IFN-γ further increased RANKL expression and IL-17 production in TH-CD4+ T cells. In addition, the osteoporotic phenotype of TH mice was improved by treatment with alendronate. These results strongly indicate that increased leptin in TH mice may act in conjunction with IL-6 to preferentially stimulate IL-17 production in CD4+ T cells and induce RANKL-mediated osteoclastogenesis. Accordingly, we propose that TH mice could constitute a beneficial model for osteoporosis

    Identifying Highly Conserved and Highly Differentiated Gene Ontology Categories in Human Populations

    Get PDF
    Detecting and interpreting certain system-level characteristics associated with human population genetic differences is a challenge for human geneticists. In this study, we conducted a population genetic study using the HapMap genotype data to identify certain special Gene Ontology (GO) categories associated with high/low genetic difference among 11 Hapmap populations. Initially, the genetic differences in each gene region among these populations were measured using allele frequency, linkage disequilibrium (LD) pattern, and transferability of tagSNPs. The associations between each GO term and these genetic differences were then identified. The results showed that cellular process, catalytic activity, binding, and some of their sub-terms were associated with high levels of genetic difference, and genes involved in these functional categories displayed, on average, high genetic diversity among different populations. By contrast, multicellular organismal processes, molecular transducer activity, and some of their sub-terms were associated with low levels of genetic difference. In particular, the neurological system process under the multicellular organismal process category had low levels of genetic difference; the neurological function also showed high evolutionary conservation between species in some previous studies. These results may provide a new insight into the understanding of human evolutionary history at the system-level

    Meta-analysis of archived DNA microarrays identifies genes regulated by hypoxia and involved in a metastatic phenotype in cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastasis is a major cancer-related cause of death. Recent studies have described metastasis pathways. However, the exact contribution of each pathway remains unclear. Another key feature of a tumor is the presence of hypoxic areas caused by a lack of oxygen at the center of the tumor. Hypoxia leads to the expression of pro-metastatic genes as well as the repression of anti-metastatic genes. As many Affymetrix datasets about metastasis and hypoxia are publicly available and not fully exploited, this study proposes to re-analyze these datasets to extract new information about the metastatic phenotype induced by hypoxia in different cancer cell lines.</p> <p>Methods</p> <p>Affymetrix datasets about metastasis and/or hypoxia were downloaded from GEO and ArrayExpress. AffyProbeMiner and GCRMA packages were used for pre-processing and the Window Welch <it>t </it>test was used for processing. Three approaches of meta-analysis were eventually used for the selection of genes of interest.</p> <p>Results</p> <p>Three complementary approaches were used, that eventually selected 183 genes of interest. Out of these 183 genes, 99, among which the well known <it>JUNB</it>, <it>FOS </it>and <it>TP63</it>, have already been described in the literature to be involved in cancer. Moreover, 39 genes of those, such as <it>SERPINE1 </it>and <it>MMP7</it>, are known to regulate metastasis. Twenty-one genes including <it>VEGFA </it>and <it>ID2 </it>have also been described to be involved in the response to hypoxia. Lastly, DAVID classified those 183 genes in 24 different pathways, among which 8 are directly related to cancer while 5 others are related to proliferation and cell motility. A negative control composed of 183 random genes failed to provide such results. Interestingly, 6 pathways retrieved by DAVID with the 183 genes of interest concern pathogen recognition and phagocytosis.</p> <p>Conclusion</p> <p>The proposed methodology was able to find genes actually known to be involved in cancer, metastasis and hypoxia and, thus, we propose that the other genes selected based on the same methodology are of prime interest in the metastatic phenotype induced by hypoxia.</p
    corecore