1,466 research outputs found
Total Cluster Energy Calculation of Lithium Ion Conductors by the DV-Xα Method
Recently several programs for the total cluster energy calculation have been developing in the DV-Xα method. In this study, we have tried to calculate and compare total cluster energies of several diatomic molecules and model clusters of ionic conductors. The total cluster energies of diatomic molecules have minimum near the equilibrium atomic distance of each molecules though the absolute value of the total cluster energy were slightly different each other. In the case of the model cluster of the Li3N crystal, which is one of the typical Li ion conductors, we have obtained the energy change as a function of the site during the movement of a Li ion. The energy change with the movement of the Li ion along the conduction path was considerably smaller than along other paths, consistent with the results by the band calculation and experiments. The total cluster energy calculation method was enough useful for the discussion of the cluster energy
Laser stimulation of the skin for quantitative study of decision-making and motivation
Neuroeconomics studies how decision-making is guided by the value of rewards and punishments. But to date, little is known about how noxious experiences impact decisions. A challenge is the lack of an aversive stimulus that is dynamically adjustable in intensity and location, readily usable over many trials in a single experimental session, and compatible with multiple ways to measure neuronal activity. We show that skin laser stimulation used in human studies of aversion can be used for this purpose in several key animal models. We then use laser stimulation to study how neurons in the orbitofrontal cortex (OFC), an area whose many roles include guiding decisions among different rewards, encode the value of rewards and punishments. We show that some OFC neurons integrated the positive value of rewards with the negative value of aversive laser stimulation, suggesting that the OFC can play a role in more complex choices than previously appreciated
Formation of superconducting yttrium barium copper oxide using sulphur-containing templates
The formation of yttrium barium copper oxide (YBCO) via biotemplated routes is often plagued by unwanted stable intermediates, some of which arise from the template itself. Here we describe a method which allows sulphur-containing templates, such as proteins, to form superconducting YBCO which would have hitherto resulted in non-superconducting sulphated phases
Dimensionality dependence of optical nonlinearity and relaxation dynamics in cuprates
Femtosecond pump-probe measurements find pronounced dimensionality dependence
of the optical nonlinearity in cuprates. Although the coherent two-photon
absorption (TPA) and linear absorption bands nearly overlap in both quasi-one
and two-dimensional (1D and 2D) cuprates, the TPA coefficient is one order of
magnitude smaller in 2D than in 1D. Furthermore, picosecond recovery of optical
transparency is observed in 1D cuprates, while the recovery in 2D involves
relaxation channels with a time scales of tens of picoseconds. The experimental
results are interpreted within the two-band extended Hubbard model.Comment: 10 pages, 4 figure
Nonlinear Optical Response in two-dimensional Mott Insulators
We study the third-order nonlinear optical susceptibility and
photoexcited states of two-dimensional (2D) Mott insulators by using an
effective model in the strong-coupling limit of a half-filled Hubbard model. In
the numerically exact diagonalization calculations on finite-size clusters, we
find that the coupling of charge and spin degrees of freedom plays a crucial
role in the distribution of the dipole-allowed states with odd parity and the
dipole-forbidden states with even parity in the photoexcited states. This is in
contrast with the photoexcited states in one dimension, where the charge and
spin degrees of freedom are decoupled. In the third-harmonic generation (THG)
spectrum, main contribution is found to come from the process of three-photon
resonance associated with the odd-parity states. As a result, the two-photon
resonance process is less pronounced in the THG spectrum. The calculated THG
spectrum is compared with recent experimental data. We also find that
with cross-polarized configuration of pump and probe photons shows
spectral distributions similar to with co-polarized configuration,
although the weight is small. These findings will help the analyses of the
experimental data of in the 2D Mott insulators.Comment: 9 pages,5 figures,RevTeX
Ultrafast photoinduced reflectivity transients in
The temperature dependence of ultrafast photoinduced reflectivity transients
is reported in NdSrMnO thin film. The photoinduced
reflectivity shows a complex response with very different temperature
dependences on different timescales. The response on the sub-ps timescale
appears to be only weakly sensitive to the 270K-metal-insulator phase
transition. Below K the sub-ps response displays a two component
behavior indicating inhomogeneity of the film resulting from the substrate
induced strain. On the other hand, the slower response on the 10-100 ps
timescale is sensitive only to the metal-insulator phase transition and is in
agreement with some previously published results. The difference in the
temperature dependences of the responses on nanosecond and s timescales
indicates that thermal equilibrium between the different degrees of fredom is
established relatively slowly - on a nanosecond timescale
Ultrafast optical nonlinearity in quasi-one-dimensional Mott-insulator
We report strong instantaneous photoinduced absorption (PA) in the
quasi-one-dimensional Mott insulator in the IR spectral
region. The observed PA is to an even-parity two-photon state that occurs
immediately above the absorption edge. Theoretical calculations based on a
two-band extended Hubbard model explains the experimental features and
indicates that the strong two-photon absorption is due to a very large
dipole-coupling between nearly degenerate one- and two-photon states. Room
temperature picosecond recovery of the optical transparency suggests the strong
potential of for all-optical switching.Comment: 10 pages, 4 figure
Nuclei beyond the drip line
In a Thomas-Fermi model, calculations are presented for nuclei beyond the
nuclear drip line at zero temperature. These nuclei are in equilibrium by the
presence of an external gas, as may be envisaged in the astrophysical scenario.
We find that there is a limiting asymmetry beyond which these nuclei can no
longer be made stable.Comment: Physical Review C (in press), 1 ReVteX file for text, 4 PS-files for
figure
Exchange Interaction in Binuclear Complexes with Rare Earth and Copper Ions: A Many-Body Model Study
We have used a many-body model Hamiltonian to study the nature of the
magnetic ground state of hetero-binuclear complexes involving rare-earth and
copper ions. We have taken into account all diagonal repulsions involving the
rare-earth 4f and 5d orbitals and the copper 3d orbital. Besides, we have
included direct exchange interaction, crystal field splitting of the rare-earth
atomic levels and spin-orbit interaction in the 4f orbitals. We have identified
the inter-orbital repulsion, U and crystal field parameter,
as the key parameters involved in controlling the type of exchange
interaction between the rare earth and copper 3d spins. We have explored
the nature of the ground state in the parameter space of U, ,
spin-orbit interaction strength and the filling n. We find
that these systems show low-spin or high-spin ground state depending on the
filling of the levels of the rare-earth ion and ground state spin is
critically dependent on U and . In case of half-filling
(Gd(III)) we find a reentrant low-spin state as U is increased, for
small values of , which explains the recently reported apparent
anomalous anti-ferromagnetic behaviour of Gd(III)-radical complexes. By varying
U we also observe a switch over in the ground state spin for other
fillings . We have introduced a spin-orbit coupling scheme which goes beyond
L-S or j-j coupling scheme and we find that spin-orbit coupling does not
significantly alter the basic picture.Comment: 22 pages, 11 ps figure
- …