62 research outputs found

    Performance of large scaled tsunami run-up analysis using explicit ISPH method

    Get PDF
    The tsunami run-up simulation by the particle method at city level needs to huge number of particle at least 1 billion particles. The conventional particle simulation method is not easy to solve these huge problem even on the premise of using supercomputer. Then, a new particle method ’fully explicit Incompressible SPH’ is developed that takes into consideration both calculation efficiency and accuracy. Finally, we demonstrate the future plan how to use our simulation resultes for a practical ’Soft’ disaster mitigation method through the evacuation education with the Virtual Reality(VR) system

    Co-appearance of superconductivity and ferromagnetism in a Ca2_2RuO4_4 nanofilm crystal

    Full text link
    By tuning the physical and chemical pressures of layered perovskite materials we can realize the quantum states of both superconductors and insulators. By reducing the thickness of a layered crystal to a nanometer level, a nanofilm crystal can provide novel quantum states that have not previously been found in bulk crystals. Here we report the realization of high-temperature superconductivity in Ca2_2RuO4_4 nanofilm single crystals. Ca2_2RuO4_4 thin film with the highest transition temperature TcT_c (midpoint) of 64~K exhibits zero resistance in electric transport measurements. The superconducting critical current exhibited a logarithmic dependence on temperature and was enhanced by an external magnetic field. Magnetic measurements revealed a ferromagnetic transition at 180~K and diamagnetic magnetization due to superconductivity. Our results suggest the co-appearance of superconductivity and ferromagnetism in Ca2_2RuO4_4 nanofilm crystals. We also found that the induced bias current and the tuned film thickness caused a superconductor-insulator transition. The fabrication of micro-nanocrystals made of layered material enables us to discuss rich superconducting phenomena in ruthenates

    Efficacy of Neuraminidase Inhibitors against H5N6 Highly Pathogenic Avian Influenza Virus in a Nonhuman Primate Model.

    Get PDF
    Attention has been paid to H5N6 highly pathogenic avian influenza virus (HPAIV) because of its heavy burden on the poultry industry and human mortality. Since an influenza A virus carrying N6 neuraminidase (NA) has never spread in humans, the potential for H5N6 HPAIV to cause disease in humans and the efficacy of antiviral drugs against the virus need to be urgently assessed. We used nonhuman primates to elucidate the pathogenesis of H5N6 HPAIV as well as to determine the efficacy of antiviral drugs against the virus. H5N6 HPAIV infection led to high fever in cynomolgus macaques. The lung injury caused by the virus was severe, with diffuse alveolar damage and neutrophil infiltration. In addition, an increase in interferon alpha (IFN-α) showed an inverse correlation with virus titers during the infection process. Oseltamivir was effective for reducing H5N6 HPAIV propagation, and continuous treatment with peramivir reduced virus propagation and the severity of symptoms in the early stage. This study also showed pathologically severe lung injury states in cynomolgus macaques infected with H5N6 HPAIV, even in those that received early antiviral drug treatments, indicating the need for close monitoring and further studies on virus pathogenicity and new antiviral therapies

    Performance of large scaled tsunami run-up analysis using explicit ISPH method

    No full text
    The tsunami run-up simulation by the particle method at city level needs to huge number of particle at least 1 billion particles. The conventional particle simulation method is not easy to solve these huge problem even on the premise of using supercomputer. Then, a new particle method ’fully explicit Incompressible SPH’ is developed that takes into consideration both calculation efficiency and accuracy. Finally, we demonstrate the future plan how to use our simulation resultes for a practical ’Soft’ disaster mitigation method through the evacuation education with the Virtual Reality(VR) system

    An Experimental Feasibility Study Evaluating the Adequacy of a Sportswear-Type Wearable for Recording Exercise Intensity

    No full text
    Sportswear-type wearables with integrated inertial sensors and electrocardiogram (ECG) electrodes have been commercially developed. We evaluated the feasibility of using a sportswear-type wearable with integrated inertial sensors and electrocardiogram (ECG) electrodes for evaluating exercise intensity within a controlled laboratory setting. Six male college athletes were asked to wear a sportswear-type wearable while performing a treadmill test that reached up to 20 km/h. The magnitude of the filtered tri-axial acceleration signal, recorded by the inertial sensor, was used to calculate the acceleration index. The R-R intervals of the ECG were used to determine heart rate; the external validity of the heart rate was then evaluated according to oxygen uptake, which is the gold standard for physiological exercise intensity. Single regression analysis between treadmill speed and the acceleration index in each participant showed that the slope of the regression line was significantly greater than zero with a high coefficient of determination (walking, 0.95; jogging, 0.96; running, 0.90). Another single regression analysis between heart rate and oxygen uptake showed that the slope of the regression line was significantly greater than zero, with a high coefficient of determination (0.96). Together, these results indicate that the sportswear-type wearable evaluated in this study is a feasible technology for evaluating physical and physiological exercise intensity across a wide range of physical activities and sport performances

    Oral Supplementation of the Vitamin D Metabolite 25(OH)D(3)Against Influenza Virus Infection in Mice

    No full text
    Vitamin D is a fat-soluble vitamin that is metabolized by the liver into 25-hydroxyvitamin D [25(OH)D] and then by the kidney into 1,25-dihydroxyvitamin D [1,25(OH)(2)D], which activates the vitamin D receptor expressed in various cells, including immune cells, for an overall immunostimulatory effect. Here, to investigate whether oral supplementation of 25-hydroxyvitamin D-3[25(OH)D-3], a major form of vitamin D metabolite 25(OH)D, has a prophylactic effect on influenza A virus infection, mice were fed a diet containing a high dose of 25(OH)D(3)and were challenged with the influenza virus. In the lungs of 25(OH)D-3-fed mice, the viral titers were significantly lower than in the lungs of standardly fed mice. Additionally, the proinflammatory cytokines IL-5 and IFN-gamma were significantly downregulated after viral infection in 25(OH)D-3-fed mice, while anti-inflammatory cytokines were not significantly upregulated. These results indicate that 25(OH)D(3)suppresses the production of inflammatory cytokines and reduces virus replication and clinical manifestations of influenza virus infection in a mouse model

    Molecule‐Electrode Interfaces Controlled by Bulky Long‐Legged Ligands in Organometallic Molecular Wires

    No full text
    Abstract Precise control of molecule‐electrode interface is essential for molecular devices. Herein, new ruthenium acetylide molecular wires with long‐legged phosphine ligands to form a sterically controlled molecule‐electrode interface are designed. The sharpened Raman signals ascribed to acetylene stretching are observed for the self‐assembled monolayers (SAMs) of the molecular wires with the biphenyl‐ (2Au) and tert‐butylbiphenyl‐substituted long‐legged dppe‐type ligands (3Au), suggesting that steric hindrance causes formation of uniform SAMs. Scanning tunneling microscope break‐junction (STM‐BJ) study of 3Au reveals narrow conductance features compared with those of 1Au bearing the parent dppe ligands, indicating formation of a uniform molecular junction. Furthermore, the effective electronic interactions between the molecule and electrodes are unique to the long‐legged derivatives, as revealed by the surface‐enhanced Raman scattering study. Thus, the bulky long‐legged strategy turns out to provide a design concept for a well‐defined molecule‐electrode interface

    Aldehyde dehydrogenase 1 identifies cells with cancer stem cell-like properties in a human renal cell carcinoma cell line.

    Get PDF
    Cancer stem cells (CSC) or cancer stem cell-like cells (CSC-LCs) have been identified in many malignant tumors. CSCs are proposed to be related with drug resistance, tumor recurrence, and metastasis and are considered as a new target for cancer treatment; however, there are only a few reports on CSCs or CSC-LCs in renal cell carcinoma (RCC). Different approaches have been reported for CSC identification, but there are no universal markers for CSC. We used two different approaches, the traditional side population (SP) approach, and the enzymatic (aldehyde dehydrogenase 1 (ALDH1)) approach to identify CSC-LC population in two RCC cell lines, ACHN and KRC/Y. We found that ACHN and KRC/Y contain 1.4% and 1.7% SP cells, respectively. ACHN SP cells showed a higher sphere forming ability, drug resistance, and a slightly higher tumorigenic ability in NOD/SCID mice than Non-SP (NSP) cells, suggesting that cells with CSC-LC properties are included in ACHN SP cells. KRC/Y SP and NSP cells showed no difference in such properties. ALDH1 activity analysis revealed that ACHN SP cells expressed a higher level of activity than NSP cells (SP vs. NSP: 32.7% vs 14.6%). Analysis of ALDH1-positive ACHN cells revealed that they have a higher sphere forming ability, self-renewal ability, tumorigenicity and express higher mRNA levels of CSC-LC property-related genes (e.g., ABC transporter genes, self-replication genes, anti-apoptosis genes, and so forth) than ALDH1-negative cells. Drug treatment or exposure to hypoxic condition induced a 2- to 3-fold increase in number of ALDH1-positive cells. In conclusion, the results suggest that the ALDH1-positive cell population rather than SP cells show CSC-LC properties in a RCC cell line, ACHN
    corecore