6 research outputs found
Impacts of algal blooms and microcystins in fish on small-scale fishers in Winam Gulf, Lake Victoria: implications for health and livelihood
Lake Victoria, bordered by Kenya, Tanzania, and Uganda, provides one of the largest freshwater fisheries in the world and supports millions in small-scale fishing communities. Historical environmental change, including population growth, nutrient loading, introduced invasive species, and rising temperatures, has resulted in eutrophication and persistent cyanobacterial harmful algae blooms (cyanoHABs) over recent decades, particularly in the shallower gulfs, bays, and inlets. CyanoHABs impact fisheries and food web dynamics and compromise food and water security for nearshore fisher populations. In this study, we examine the socialecological impact of freshwater blooms on fisher health in one of these eutrophic regions, Winam Gulf in Lake Victoria. CyanoHABs persist for months and produce microcystins and hepatotoxins at levels unsafe for human health. We assessed potential risk and contribution of microcystin exposure through fish consumption, in addition to exposure through water source, and conducted 400 fisher and 400 household surveys. Average microcystin concentrations exceeded the World Health Organization (WHO) guideline for drinking water consistently during the long dry season, and cyanobacterial cell counts surpassed WHO standards for recreational risk in 84% of samples. Hazard quotients for fish consumed by young children were 5 to 10 times higher than permissible levels. In addition, fishers chronicled profound ecosystem changes with direct impact on livelihood, fisheries, and water quality with 77.4% reporting a decline in profit or catch, 83.1% reporting adverse impacts of cyanoHABs on fish in the lake, and 98.2% reporting indicators of declining water quality in the lake overall. Through the application of a social-ecological lens to a public health model, we identified spheres of influence that modify how fishers experience HABs related stressors and risks to provide a starting point at which to identify sustainable strategies to improve food and water security and livelihood for the millions in nearshore communities
Harmful Algal Blooms Threaten the Health of Peri-Urban Fisher Communities: A Case Study in Kisumu Bay, Lake Victoria, Kenya
Available guidance to mitigate health risks from exposure to freshwater harmful algal blooms (HABs) is largely derived from temperate ecosystems. Yet in tropical ecosystems, HABs can occur year-round, and resource-dependent populations face multiple routes of exposure to toxic components. Along Winam Gulf, Lake Victoria, Kenya, fisher communities rely on lake water contaminated with microcystins (MCs) from HABs. In these peri-urban communities near Kisumu, we tested hypotheses that MCs exceed exposure guidelines across seasons, and persistent HABs present a chronic risk to fisher communities through ingestion with minimal water treatment and frequent, direct contact. We tested source waters at eleven communities across dry and rainy seasons from September 2015 through May 2016. We measured MCs, other metabolites, physicochemical parameters, chlorophyll-a, phytoplankton abundance and diversity, and fecal indicators. We then selected four communities for interviews about water sources, usage, and treatment. Greater than 30% of source water samples exceeded WHO drinking water guidelines for MCs (1 µg/L), and over 60% of source water samples exceeded USEPA guidelines for children and immunocompromised individuals. 50% of households reported a sole source of raw lake water for drinking and household use, with alternate sources including rain and boreholes. Household chlorination was the most widespread treatment utilized. At this tropical, eutrophic lake, HABs pose a year-round health risk for fisher communities in resource -limited settings. Community-based solutions and site-specific guidance for Kisumu Bay and similarly impacted regions is needed to address a chronic health exposure likely to increase in severity and duration with global climate change
The quantification of the extent of flooding on selected major Afrotropical lakes to guide management implications
The extent of flooding in vulnerable inland and lacustrine systems can demonstrate the coverage and the magnitude of such phenomenon for policy enhancement. This study examined the extent of flooding due to rising water levels in selected Afrotropical lakes to guide interventions that would sustain the livelihoods of communities affected. The years that were most prone to flooding (2010 and 2020) were used as a baseline in the extraction of changes in spatial extent and area of lacustrine shoreline, and rainfall and satellite altimetry data, using geospatial and remote sensing technologies. The extent of flooding was strongly but insignificantly related (R2 = 0.63; p = 0.07) to the sizes of the studied lakes and the amount of rainfall. Lakes with the smallest surface areas such as Baringo and Naivasha showed the greatest increase in flooding of 52.63% and 42.62%, respectively. Larger lakes such as Lakes Victoria (1.05%), Turkana (3.77%), and Tanganyika (0.07%) had the lowest increases in areal extent. Furthermore, the topography of the lakes studied further determined the residence time and the extent of flooding, such that lakes such as Edward (−0.09%) and Rukwa (−3.25%) receded during the period when other lakes were flooding. The information and data presented here provides the most up-to-date quantification of flooding to support adaptation strategies for inland lake systems and guide policy implementation
High-resolution bathymetries and shorelines for the Great Lakes of the White Nile basin
This article is licensed under a Creative Commons Attribution 4.0 International License.HRBS-GLWNB 2020 presents the first open-source and high-resolution bathymetry, shoreline, and water level data for Lakes Victoria, Albert, Edward, and George in East Africa. For each Lake, these data have three primary products collected for this project. The bathymetric datasets were created from approximately 18 million acoustic soundings. Over 8,200 km of shorelines are delineated across the three lakes from high-resolution satellite systems and uncrewed aerial vehicles. Finally, these data are tied together by creating lake surface elevation models collected from GPS and altimeter measures. The data repository includes additional derived products, including surface areas, water volumes, shoreline lengths, lake elevation levels, and geodetic information. These data can be used to make allocation decisions regarding the freshwater resources within Africa, manage food resources on which many tens of millions of people rely, and help preserve the region’s endemic biodiversity. Finally, as these data are tied to globally consistent geodetic models, they can be used in future global and regional climate change models.ECU Open Access Publishing Support Fun
A GIS-based approach for delineating suitable areas for cage fish culture in a lake
We present a GIS-based approach to the delineation of areas that have different levels of suitability for use as tilapia cage culture sites the Kenyan part of Lake Victoria, Africa. The study area was 4,100 km2. The method uses high-resolution bathymetric data, newly collected water quality data from all major fishing grounds and cage culture sites, and existing spatial information from previous studies. The parameters considered are water depth, water temperature, levels of dissolved oxygen, chlorophyll-a concentrations, distances to the lake shoreline and proximity to other constraints on cage culture development. The results indicated that the area most suitable for fish cages comprised about 362 km2, or approximately 9% of the total area; the remaining 91% (i.e., 3,737 km2) was found to be unsuitable for tilapia cage culture. We conclude that the successful implementation of this approach would need stakeholder involvement in the validation and approval of potential sites, and in the incorporation of lake zoning into spatial planning policy and the regulations that support sustainable use while minimising resource use conflicts. The results of this study have broader applicability to the whole of Lake Victoria, other African Great Lakes, and any lakes in the world where tilapia cage culture already occurs or may occur in the future