147 research outputs found
Prospects for the discovery of the next new element: Influence of projectiles with Z > 20
The possibility of forming new superheavy elements with projectiles having Z
> 20 is discussed. Current research has focused on the fusion of 48Ca with
actinides targets, but these reactions cannot be used for new element
discoveries in the future due to a lack of available target material. The
influence on reaction cross sections of projectiles with Z > 20 have been
studied in so-called analog reactions, which utilize lanthanide targets
carefully chosen to create compound nuclei with energetics similar to those
found in superheavy element production. The reactions 48Ca, 45Sc, 50Ti, 54Cr +
159Tb, 162Dy have been studied at the Cyclotron Institute at Texas A&M
University using the Momentum Achromat Recoil Spectrometer. The results of
these experimental studies are discussed in terms of the influence of
collective enhancements to level density for compound nuclei near closed
shells, and the implications for the production of superheavy elements. We have
observed no evidence to contradict theoretical predictions that the maximum
cross section for the 249Cf(50Ti, 4n)295120 and 248Cm(54Cr, 4n)298120 reactions
should be in the range of 10-100 fb.Comment: An invited talk given by Charles M. Folden III at the 11th
International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio,
Texas, USA, May 27-June 1, 2012. Also contains information presented by
Dmitriy A. Mayorov and Tyler A. Werke in separate contributions to the
conference. This contribution will appear in the NN2012 Proceedings in
Journal of Physics: Conference Series (JPCS
Two-Step Model of Fusion for Synthesis of Superheavy Elements
A new model is proposed for fusion mechanisms of massive nuclear systems
where so-called fusion hindrance exists. The model describes two-body collision
processes in an approaching phase and shape evolutions of an amalgamated system
into the compound nucleus formation. It is applied to Ca-induced
reactions and is found to reproduce the experimental fusion cross sections
extremely well, without any free parameter. Combined with the statistical decay
theory, residue cross sections for the superheavy elements can be readily
calculated. Examples are given.Comment: 4 pages, 4 figure
Identification of new transitions and mass assignments of levels in Pr
The previously reported levels assigned to 151,152,153Pr have recently been
called into question regarding their mass assignment. The above questioned
level assignments are clarified by measuring g-transitions tagged with A and Z
in an in-beam experiment in addition to the measurements from 252Cf spontaneous
fission (SF) and establish new spectroscopic information from to
in the Pr isotopic chain. The isotopic chain 143-153Pr has been studied from
the spontaneous fission of 252Cf by using Gammasphere and also from the
measurement of the prompt g-rays in coincidence with isotopically-identified
fission fragments using VAMOS++ and EXOGAM at GANIL. The latter were produced
using 238U beams on a 9Be target at energies around the Coulomb barrier. The
g-g-g-g data from 252Cf (SF) and those from the GANIL in-beam A- and Z-gated
spectra were combined to unambiguously assign the various transitions and
levels in 151,152,153Pr and other isotopes. New transitions and bands in
145,147,148,149,150Pr were identified by using g-g-g and g-g-g-g coincidences
and A and Z gated g-g spectra. The transitions and levels previously assigned
to 151,153Pr have been confirmed by the (A,Z) gated spectra. The transitions
previously assigned to 152Pr are now assigned to 151Pr on the basis of the
(A,Z) gated spectra. Two new bands with 20 new transitions in 152Pr and one new
band with 7 new transitions in 153Pr are identified from the g-g-g-g
coincidence spectra and the (A,Z) gated spectrum. In addition, new g-rays are
also reported in 143-146Pr. New levels of 145,147-153Pr have been established,
reliable mass assignments of the levels in 151,152,153Pr have been reported and
new transitions have been identified in 143-146Pr showing the new avenues that
are opened by combining the two experimental approaches.Comment: Accepted in Phys. Rev.
Dynamic study on fusion reactions for Ca+Zr around Coulomb barrier
By using the updated improved Quantum Molecular Dynamics model in which a
surface-symmetry potential term has been introduced for the first time, the
excitation functions for fusion reactions of Ca+Zr at
energies around the Coulomb barrier have been studied. The experimental data of
the fusion cross sections for Ca+Zr have been reproduced
remarkably well without introducing any new parameters. The fusion cross
sections for the neutron-rich fusion reactions of Ca+Zr around
the Coulomb barrier are predicted to be enhanced compared with a
non-neutron-rich fusion reaction. In order to clarify the mechanism of the
enhancement of the fusion cross sections for neutron-rich nuclear fusions, we
pay a great attention to study the dynamic lowering of the Coulomb barrier
during a neck formation. The isospin effect on the barrier lowering is
investigated. It is interesting that the effect of the projectile and target
nuclear structure on fusion dynamics can be revealed to a certain extent in our
approach. The time evolution of the N/Z ratio at the neck region has been
firstly illustrated. A large enhancement of the N/Z ratio at neck region for
neutron-rich nuclear fusion reactions is found.Comment: 21 pages, 7 figures,3 table
Nuclei, Superheavy Nuclei and Hypermatter in a chiral SU(3)-Modell
A model based on chiral SU(3)-symmetry in nonlinear realisation is used for
the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange
nuclear objects (so called MEMOs). The model works very well in the case of
nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic
observables which are known for nuclei and hypernuclei are reproduced
satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next
shell closures in the region of superheavy nuclei. The calculations have been
performed in self-consistent relativistic mean field approximation assuming
spherical symmetry. The parameters were adapted to known nuclei.Comment: 19 pages, 11 figure
Shell Corrections of Superheavy Nuclei in Self-Consistent Calculations
Shell corrections to the nuclear binding energy as a measure of shell effects
in superheavy nuclei are studied within the self-consistent Skyrme-Hartree-Fock
and Relativistic Mean-Field theories. Due to the presence of low-lying proton
continuum resulting in a free particle gas, special attention is paid to the
treatment of single-particle level density. To cure the pathological behavior
of shell correction around the particle threshold, the method based on the
Green's function approach has been adopted. It is demonstrated that for the
vast majority of Skyrme interactions commonly employed in nuclear structure
calculations, the strongest shell stabilization appears for Z=124, and 126, and
for N=184. On the other hand, in the relativistic approaches the strongest
spherical shell effect appears systematically for Z=120 and N=172. This
difference has probably its roots in the spin-orbit potential. We have also
shown that, in contrast to shell corrections which are fairly independent on
the force, macroscopic energies extracted from self-consistent calculations
strongly depend on the actual force parametrisation used. That is, the A and Z
dependence of mass surface when extrapolating to unknown superheavy nuclei is
prone to significant theoretical uncertainties.Comment: 14 pages REVTeX, 8 eps figures, submitted to Phys. Rev.
Have Superheavy Elements been Produced in Nature?
We discuss the possibility whether superheavy elements can be produced in
Nature by the astrophysical rapid neutron capture process. To this end we have
performed fully dynamical network r-process calculations assuming an
environment with neutron-to-seed ratio large enough to produce superheavy
nuclei. Our calculations include two sets of nuclear masses and fission
barriers and include all possible fission channels and the associated fission
yield distributions. Our calculations produce superheavy nuclei with A ~ 300
that however decay on timescales of days.Comment: 12 pages, 11 figure
Pairing in nuclear systems: from neutron stars to finite nuclei
We discuss several pairing-related phenomena in nuclear systems, ranging from
superfluidity in neutron stars to the gradual breaking of pairs in finite
nuclei. We focus on the links between many-body pairing as it evolves from the
underlying nucleon-nucleon interaction and the eventual experimental and
theoretical manifestations of superfluidity in infinite nuclear matter and of
pairing in finite nuclei. We analyse the nature of pair correlations in nuclei
and their potential impact on nuclear structure experiments. We also describe
recent experimental evidence that points to a relation between pairing and
phase transitions (or transformations) in finite nuclear systems. Finally, we
discuss recent investigations of ground-state properties of random two-body
interactions where pairing plays little role although the interactions yield
interesting nuclear properties such as 0+ ground states in even-even nuclei.Comment: 74 pages, 33 figs, uses revtex4. Submitted to Reviews of Modern
Physic
- âŠ