36 research outputs found

    Dyskeratosis congenita: natural history of the disease through the study of a cohort of patients diagnosed in childhood

    Get PDF
    BackgroundDyskeratosis congenita (DC) is a multisystem and ultra-rare hereditary disease characterized by somatic involvement, bone marrow failure, and predisposition to cancer. The main objective of this study is to describe the natural history of DC through a cohort of patients diagnosed in childhood and followed up for a long period of time.Material and methodsMulticenter, retrospective, longitudinal study conducted in patients followed up to 24 years since being diagnosed in childhood (between 1998 and 2020).ResultsFourteen patients were diagnosed with DC between the ages of 3 and 17 years (median, 8.5 years). They all had hematologic manifestations at diagnosis, and nine developed mucocutaneous manifestations during the first decade of life. Seven presented severe DC variants. All developed non-hematologic manifestations during follow-up. Mutations were identified in 12 patients. Thirteen progressed to bone marrow failure at a median age of 8 years [range, 3–18 years], and eight received a hematopoietic stem cell transplant. Median follow-up time was 9 years [range, 2–24 years]. Six patients died, the median age was 13 years [range, 6–24 years]. As of November 2022, eight patients were still alive, with a median age of 18 years [range, 6–32 years]. None of them have developed myeloblastic syndrome or cancer.ConclusionsDC was associated with high morbidity and mortality in our series. Hematologic manifestations appeared early and consistently. Non-hematologic manifestations developed progressively. No patient developed cancer possibly due to their young age. Due to the complexity of the disease multidisciplinary follow-up and adequate transition to adult care are essential

    Strategic Recommendations for the Transnational Management of Invasive Alien Crayfish and Crabs in Iberian Inland Waters

    Get PDF
    An important goal of LIFE INVASAQUA is to develop tools that will improve management and increase the efficiency of the Early Warning and Rapid Response framework for Invasive Alien Species (IAS) in the Iberian Peninsula. We developed a participative process with experts in order to obtain Strategic Recommendations for the transnational management of invasive alien crayfish and crabs in inland waters of Spain and Portugal. They promote the coordinated management between Spain and Portugal, in order to facilitate implementation of international commitments and best practices and to support development of policies and targets on IAS management at Iberian scale. They were designed to serve as a guiding tool seeking to identify a strategic direction for the Spanish and Portuguese governance that is already being developed. The resulting Strategic Recommendations are important tools supporting the implementation of the IAS EU Regulation. Ultimately, the information included can be used for achieving the target of the EU Biodiversity Strategy to 2030 for combatting IAS, and also for implementing of other EU policies with requirements on alien species, such as the Birds and Habitats Directives, and the Marine Strategy and Water Framework Directives

    Taming the terminological tempest in invasion science

    Get PDF
    \ua9 2024 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society. Standardised terminology in science is important for clarity of interpretation and communication. In invasion science – a dynamic and rapidly evolving discipline – the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. ‘non-native’, ‘alien’, ‘invasive’ or ‘invader’, ‘exotic’, ‘non-indigenous’, ‘naturalised’, ‘pest’) to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) ‘non-native’, denoting species transported beyond their natural biogeographic range, (ii) ‘established non-native’, i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) ‘invasive non-native’ – populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising ‘spread’ for classifying invasiveness and ‘impact’ for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species

    Black list and Alert list of the Aquatic Invasive Alien Species in the Iberian Peninsula: an action of the LIFE INVASAQUA

    Get PDF
    Resumen del trabajo presentado en VI Congreso Nacional sobre Especies Exóticas Invasoras y I Congreso Ibérico sobre EEI (EEI 2022) celebrado en Navarra del 20 al 23 de abril de 2022.One of the objectives of LIFE INVASQUA project is to develop tools that will be more efficient the Early Warning and Rapid Response (EWRR) framework for Invasive Alien Species in the Iberian Peninsula. Horizon scanning for high-risk IAS is basic in implementing measures to reduce new invasions, developing Alert lists, and to focus effort in the species already established, for instance making a Black list. We developed a trans national horizon scanning exercise focused on inland waters of Spain and Portugal in order to provide a prioritized lists (Black list and Alert list) of aquatic IAS that may pose a threat to aquatic ecosystems and socio economic sectors in the future. We followed a step approach of existing information about IAS (Plants, Freshwater Invertebrates, Estuarine Invertebrates and Vertebrates; 127 established taxa in Black list; 90 non established taxa in Alert list) combining with an expert scoring of prioritized taxa. IAS established in the Iberian aquatic system consistently highlighted as the worst included vertebrates (e.g. Cyprinus carpio, Gambusia holbrooki, Silurus glanis), freshwater and estuarine invertebrates (e.g. Procambarus clarkii, Dreissena polymorpha, Pacifastacus leniusculus, Ficopomatus enigmaticus, Callinectes sapidus, Corbicula fluminea) and plants (e.g. Eichhornia crassipes, Azolla filiculoides, Ludwigia grandiflora). Amongst taxa not yet established (Alert list), expert pointed to Perna viridis, Hydroides dirampha, Dreissena bugensis, Procambarus fallax f. virginallis, Perccottus glenii with higher risk of invasion, ecological and socioeconomic impacts. Over 20.6% of the taxa in the preliminary black list received no votes (no prioritization) by experts, 17.8% in the innitial alert list. Our horizon scanning approach is inclusive of all-taxa, prioritizes both established and emerging biological threats across trans-national scales, and considers not only the ecological impact, but also potential direct economic consequences as well as the manageability of invasive species.This work received funds from the LIFE Programme (LIFE17 GIE/ES/000515)

    Taming the terminological tempest in invasion science

    Get PDF
    Standardized terminology in science is important for clarity of interpretation and communication. In invasion science — a dynamic and quickly evolving discipline — the rapid proliferation of technical terminology has lacked a standardized framework for its language development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damages and interventions. A standardized framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardizing terminology across stakeholders remains a prevailing challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalized, 'pest') to propose a more simplified and standardized terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' — populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualizing 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (1) dispersal mechanism, (2) species origin, (3) population status, and (4) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species

    Rigid laws and invasive species management

    No full text
    Conservation conflicts arise frequently in the management of non-native invasive species (NIS) when such species provide socioeconomic benefits and have negative environmental impacts (van Wilgen & Richardson 2014). For example, when restrictions on exploitation of NIS are applied in response to demands from the public or agencies, NIS users may believe conservation interests take precedence over their interests (Fig. 1). These restrictions are justified by the benefits to biodiversity, but the absence of such benefits may generate a loss of social support for conservation, potentially leading to deregulation. To illustrate, we considered management of the red swamp crayfish in Spain and the European rabbit in New Zealand
    corecore