302 research outputs found

    Attractions between charged colloids at water interfaces

    Full text link
    The effective potential between charged colloids trapped at water interfaces is analyzed. It consists of a repulsive electrostatic and an attractive capillary part which asymptotically both show dipole--like behavior. For sufficiently large colloid charges, the capillary attraction dominates at large separations. The total effective potential exhibits a minimum at intermediate separations if the Debye screening length of water and the colloid radius are of comparable size.Comment: 8 pages, 1 figure, revised version (one paragraph added) accepted in JPC

    Shock waves in capillary collapse of colloids: a model system for two--dimensional screened Newtonian gravity

    Get PDF
    Using Brownian dynamics simulations, density functional theory, and analytical perturbation theory we study the collapse of a patch of interfacially trapped, micrometer-sized colloidal particles, driven by long-ranged capillary attraction. This attraction {is formally analogous} to two--dimensional (2D) screened Newtonian gravity with the capillary length \hat{\lambda} as the screening length. Whereas the limit \hat{\lambda} \to \infty corresponds to the global collapse of a self--gravitating fluid, for finite \hat{\lambda} we predict theoretically and observe in simulations a ringlike density peak at the outer rim of a disclike patch, moving as an inbound shock wave. Possible experimental realizations are discussed.Comment: 5 pages, 3 figures, revised version with new Refs. added, matches version accepted for publication in PR

    Solvent mediated interactions close to fluid-fluid phase separation: microscopic treatment of bridging in a soft core fluid

    Get PDF
    Using density functional theory we calculate the density profiles of a binary solvent adsorbed around a pair of big solute particles. All species interact via repulsive Gaussian potentials. The solvent exhibits fluid-fluid phase separation and for thermodynamic states near to coexistence the big particles can be surrounded by a thick adsorbed `wetting' film of the coexisting solvent phase. On reducing the separation between the two big particles we find there can be a `bridging' transition as the wetting films join to form a fluid bridge. The potential between the two big particles becomes long ranged and strongly attractive in the bridged configuration. Within our mean-field treatment the bridging transition results in a discontinuity in the solvent mediated force. We demonstrate that accounting for the phenomenon of bridging requires the presence of a non-zero bridge function in the correlations between the solute particles when our model fluid is described within a full mixture theory based upon the Ornstein-Zernike equations.Comment: 28 pages, 8 figure

    Solvent-mediated interactions between nanoparticles at fluid interfaces

    Full text link
    We investigate the solvent mediated interactions between nanoparticles adsorbed at a liquid-vapor interface in comparison to the solvent mediated interactions in the bulk liquid and vapor phases of a Lennard-Jones solvent. Molecular dynamics simulation data for the latter are in good agreement with results from integral equations in the reference functional approximation and a simple geometric approximation. Simulation results for the solvent mediated interactions at the interface differ markedly from the interactions of the particles in the corresponding bulk phases. We find that at short interparticle distances the interactions are considerably more repulsive than those in either bulk phase. At long interparticle distances we find evidence for a long-ranged attraction. We discuss these observations in terms of interfacial interactions, namely, the three-phase line tension that would operate at short distances, and capillary wave interactions for longer interparticle distances.Comment: 22 pages, 6 figure

    Precursor-mediated crystallization process in suspensions of hard spheres

    Full text link
    We report on a large scale computer simulation study of crystal nucleation in hard spheres. Through a combined analysis of real and reciprocal space data, a picture of a two-step crystallization process is supported: First dense, amorphous clusters form which then act as precursors for the nucleation of well-ordered crystallites. This kind of crystallization process has been previously observed in systems that interact via potentials that have an attractive as well as a repulsive part, most prominently in protein solutions. In this context the effect has been attributed to the presence of metastable fluid-fluid demixing. Our simulations, however, show that a purely repulsive system (that has no metastable fluid-fluid coexistence) crystallizes via the same mechanism.Comment: 4 figure

    Tension and stiffness of the hard sphere crystal-fluid interface

    Full text link
    A combination of fundamental measure density functional theory and Monte Carlo computer simulation is used to determine the orientation-resolved interfacial tension and stiffness for the equilibrium hard-sphere crystal-fluid interface. Microscopic density functional theory is in quantitative agreement with simulations and predicts a tension of 0.66 kT/\sigma^2 with a small anisotropy of about 0.025 kT and stiffnesses with e.g. 0.53 kT/\sigma^2 for the (001) orientation and 1.03 kT/\sigma^2 for the (111) orientation. Here kT is denoting the thermal energy and \sigma the hard sphere diameter. We compare our results with existing experimental findings

    Production Processes as a Tool to Study Parameterizations of Quark Confinement

    Get PDF
    We introduce diquarks as separable correlations in the two-quark Green's function to facilitate the description of baryons as relativistic three-quark bound states. These states then emerge as solutions of Bethe-Salpeter equations for quarks and diquarks that interact via quark exchange. When solving these equations we consider various dressing functions for the free quark and diquark propagators that prohibit the existence of corresponding asymptotic states and thus effectively parameterize confinement. We study the implications of qualitatively different dressing functions on the model predictions for the masses of the octet baryons as well as the electromagnetic and strong form factors of the nucleon. For different dressing functions we in particular compare the predictions for kaon photoproduction, γpKΛ\gamma p\to K\Lambda, and associated strangeness production, pppKΛpp\to pK\Lambda with experimental data. This leads to conclusions on the permissibility of different dressing functions.Comment: 43 pages, Latex, 28 eps files included via epsfig; version to be published in Physical Review

    Hydrodynamic interactions induce anomalous diffusion under partial confinement

    Get PDF
    Under partial confinement, the motion of colloidal particles is restricted to a plane or a line but their dynamics is influenced by hydrodynamic interactions mediated by the unconfined, three-dimensional flow of the embedding fluid. We demonstrate that this dimensionality mismatch induces a characteristic divergence in the collective diffusion coefficient of the colloidal subsystem. This result, independent of the specific interparticle forces in the colloid, is solely due to the kinematical constraint on the colloidal particles, and it is different from the known divergence of transport coefficients in purely one or two-dimensional fluids.Spanish Government AIB2010DE-00263 and FIS2011-24460 (partially financed by FEDER funds)European Commission 22839

    Collective dynamics of colloids at fluid interfaces

    Full text link
    The evolution of an initially prepared distribution of micron sized colloidal particles, trapped at a fluid interface and under the action of their mutual capillary attraction, is analyzed by using Brownian dynamics simulations. At a separation \lambda\ given by the capillary length of typically 1 mm, the distance dependence of this attraction exhibits a crossover from a logarithmic decay, formally analogous to two-dimensional gravity, to an exponential decay. We discuss in detail the adaption of a particle-mesh algorithm, as used in cosmological simulations to study structure formation due to gravitational collapse, to the present colloidal problem. These simulations confirm the predictions, as far as available, of a mean-field theory developed previously for this problem. The evolution is monitored by quantitative characteristics which are particularly sensitive to the formation of highly inhomogeneous structures. Upon increasing \lambda\ the dynamics show a smooth transition from the spinodal decomposition expected for a simple fluid with short-ranged attraction to the self-gravitational collapse scenario.Comment: 13 pages, 12 figures, revised, matches version accepted for publication in the European Physical Journal

    Effective interactions of colloids on nematic films

    Get PDF
    The elastic and capillary interactions between a pair of colloidal particles trapped on top of a nematic film are studied theoretically for large separations dd. The elastic interaction is repulsive and of quadrupolar type, varying as d5d^{-5}. For macroscopically thick films, the capillary interaction is likewise repulsive and proportional to d5d^{-5} as a consequence of mechanical isolation of the system comprised of the colloids and the interface. A finite film thickness introduces a nonvanishing force on the system (exerted by the substrate supporting the film) leading to logarithmically varying capillary attractions. However, their strength turns out to be too small to be of importance for the recently observed pattern formation of colloidal droplets on nematic films.Comment: 13 pages, accepted by EPJ
    corecore