A combination of fundamental measure density functional theory and Monte
Carlo computer simulation is used to determine the orientation-resolved
interfacial tension and stiffness for the equilibrium hard-sphere crystal-fluid
interface. Microscopic density functional theory is in quantitative agreement
with simulations and predicts a tension of 0.66 kT/\sigma^2 with a small
anisotropy of about 0.025 kT and stiffnesses with e.g. 0.53 kT/\sigma^2 for the
(001) orientation and 1.03 kT/\sigma^2 for the (111) orientation. Here kT is
denoting the thermal energy and \sigma the hard sphere diameter. We compare our
results with existing experimental findings