621 research outputs found
Spatial Resonator Solitons
Spatial solitons can exist in various kinds of nonlinear optical resonators
with and without amplification. In the past years different types of these
localized structures such as vortices, bright, dark solitons and phase solitons
have been experimentally shown to exist. Many links appear to exist to fields
different from optics, such as fluids, phase transitions or particle physics.
These spatial resonator solitons are bistable and due to their mobility suggest
schemes of information processing not possible with the fixed bistable elements
forming the basic ingredient of traditional electronic processing. The recent
demonstration of existence and manipulation of spatial solitons in emiconductor
microresonators represents a step in the direction of such optical parallel
processing applications. We review pattern formation and solitons in a general
context, show some proof of principle soliton experiments on slow systems, and
describe in more detail the experiments on semiconductor resonator solitons
which are aimed at applications.Comment: 15 pages, 32 figure
Femtosecond spectroscopy of the first events of the photochemical cycle in bacteriorhodopsin
The first steps in the photochemistry of bacteriorhodopsin (BR) are investigated with light pulses of 160 fs duration. Four samples are studied: (i) the purple membrane, (ii) deuterated purple membrane, (iii) BR trimers and (iv) BR monomers. In all samples the first intermediate J is formed within 430±50 fs. No isotope effect is observed in the formation of J upon deuteration, in contrast to previous reports with much higher excitation energies. Thus proton movement to or from the retinal Schiff's base is not relevant during the first step. Comparing the data for trimeric and monomeric BR suggests an upper limit of 50 fs for the transfer of excitation energy from the excitonically coupled trimer to a single retinal chromophore
Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea : research article
Background Differential expression of genes can be regulated on many different levels. Most global studies of gene regulation concentrate on transcript level regulation, and very few global analyses of differential translational efficiencies exist. The studies have revealed that in Saccharomyces cerevisiae, Arabidopsis thaliana, and human cell lines translational regulation plays a significant role. Additional species have not been investigated yet. Particularly, until now no global study of translational control with any prokaryotic species was available. Results A global analysis of translational control was performed with two haloarchaeal model species, Halobacterium salinarum and Haloferax volcanii. To identify differentially regulated genes, exponentially growing and stationary phase cells were compared. More than 20% of H. salinarum transcripts are translated with non-average efficiencies. By far the largest group is comprised of genes that are translated with above-average efficiency specifically in exponential phase, including genes for many ribosomal proteins, RNA polymerase subunits, enzymes, and chemotaxis proteins. Translation of 1% of all genes is specifically repressed in either of the two growth phases. For comparison, DNA microarrays were also used to identify differential transcriptional regulation in H. salinarum, and 17% of all genes were found to have non-average transcript levels in exponential versus stationary phase. In H. volcanii, 12% of all genes are translated with non-average efficiencies. The overlap with H. salinarum is negligible. In contrast to H. salinarum, 4.6% of genes have non-average translational efficiency in both growth phases, and thus they might be regulated by other stimuli than growth phase. Conclusions For the first time in any prokaryotic species it was shown that a significant fraction of genes is under differential translational control. Groups of genes with different regulatory patterns were discovered. However, neither the fractions nor the identity of regulated genes are conserved between H. salinarum and H. volcanii, indicating that prokaryotes as well as eukaryotes use differential translational control for the regulation of gene expression, but that the identity of regulated genes is not conserved For 70 H. salinarum genes potentiation of regulation was observed, but for the majority of regulated genes either transcriptional or translational regulation is employed
Femtosecond spectroscopy of the first events of the photochemical cycle in bacteriorhodopsin
The first steps in the photochemistry of bacteriorhodopsin (BR) are investigated with light pulses of 160 fs duration. Four samples are studied: (i) the purple membrane, (ii) deuterated purple membrane, (iii) BR trimers and (iv) BR monomers. In all samples the first intermediate J is formed within 430±50 fs. No isotope effect is observed in the formation of J upon deuteration, in contrast to previous reports with much higher excitation energies. Thus proton movement to or from the retinal Schiff's base is not relevant during the first step. Comparing the data for trimeric and monomeric BR suggests an upper limit of 50 fs for the transfer of excitation energy from the excitonically coupled trimer to a single retinal chromophore
Systems analysis of bioenergetics and growth of the extreme halophile Halobacterium salinarum
Halobacterium salinarum is a bioenergetically flexible, halophilic microorganism that can generate energy by respiration, photosynthesis, and the fermentation of arginine. In a previous study, using a genome-scale metabolic model, we have shown that the archaeon unexpectedly degrades essential amino acids under aerobic conditions, a behavior that can lead to the termination of growth earlier than necessary. Here, we further integratively investigate energy generation, nutrient utilization, and biomass production using an extended methodology that accounts for dynamically changing transport patterns, including those that arise from interactions among the supplied metabolites. Moreover, we widen the scope of our analysis to include phototrophic conditions to explore the interplay between different bioenergetic modes. Surprisingly, we found that cells also degrade essential amino acids even during phototropy, when energy should already be abundant. We also found that under both conditions considerable amounts of nutrients that were taken up were neither incorporated into the biomass nor used as respiratory substrates, implying the considerable production and accumulation of several metabolites in the medium. Some of these are likely the products of forms of overflow metabolism. In addition, our results also show that arginine fermentation, contrary to what is typically assumed, occurs simultaneously with respiration and photosynthesis and can contribute energy in levels that are comparable to the primary bioenergetic modes, if not more. These findings portray a picture that the organism takes an approach toward growth that favors the here and now, even at the cost of longer-term concerns. We believe that the seemingly "greedy" behavior exhibited actually consists of adaptations by the organism to its natural environments, where nutrients are not only irregularly available but may altogether be absent for extended periods that may span several years. Such a setting probably predisposed the cells to grow as much as possible when the conditions become favorable
Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea
<p>Abstract</p> <p>Background</p> <p>Differential expression of genes can be regulated on many different levels. Most global studies of gene regulation concentrate on transcript level regulation, and very few global analyses of differential translational efficiencies exist. The studies have revealed that in <it>Saccharomyces cerevisiae</it>, <it>Arabidopsis thaliana</it>, and human cell lines translational regulation plays a significant role. Additional species have not been investigated yet. Particularly, until now no global study of translational control with any prokaryotic species was available.</p> <p>Results</p> <p>A global analysis of translational control was performed with two haloarchaeal model species, <it>Halobacterium salinarum </it>and <it>Haloferax volcanii</it>. To identify differentially regulated genes, exponentially growing and stationary phase cells were compared.</p> <p>More than 20% of <it>H. salinarum </it>transcripts are translated with non-average efficiencies. By far the largest group is comprised of genes that are translated with above-average efficiency specifically in exponential phase, including genes for many ribosomal proteins, RNA polymerase subunits, enzymes, and chemotaxis proteins. Translation of 1% of all genes is specifically repressed in either of the two growth phases. For comparison, DNA microarrays were also used to identify differential transcriptional regulation in <it>H. salinarum</it>, and 17% of all genes were found to have non-average transcript levels in exponential versus stationary phase.</p> <p>In <it>H. volcanii</it>, 12% of all genes are translated with non-average efficiencies. The overlap with <it>H. salinarum </it>is negligible. In contrast to <it>H. salinarum</it>, 4.6% of genes have non-average translational efficiency in both growth phases, and thus they might be regulated by other stimuli than growth phase.</p> <p>Conclusion</p> <p>For the first time in any prokaryotic species it was shown that a significant fraction of genes is under differential translational control. Groups of genes with different regulatory patterns were discovered. However, neither the fractions nor the identity of regulated genes are conserved between <it>H. salinarum </it>and <it>H. volcanii</it>, indicating that prokaryotes as well as eukaryotes use differential translational control for the regulation of gene expression, but that the identity of regulated genes is not conserved.</p> <p>For 70 <it>H. salinarum </it>genes potentiation of regulation was observed, but for the majority of regulated genes either transcriptional or translational regulation is employed.</p
Inter-species variation in the oligomeric states of the higher plant Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase
In darkened leaves the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form a regulatory multi-enzyme complex with the small chloroplast protein CP12. GAPDH also forms a high molecular weight regulatory mono-enzyme complex. Given that there are different reports as to the number and subunit composition of these complexes and that enzyme regulatory mechanisms are known to vary between species, it was reasoned that protein-protein interactions may also vary between species. Here, this variation is investigated. This study shows that two different tetramers of GAPDH (an A2B2 heterotetramer and an A4 homotetramer) have the capacity to form part of the PRK/GAPDH/CP12 complex. The role of the PRK/GAPDH/CP12 complex is not simply to regulate the 'non-regulatory' A4 GAPDH tetramer. This study also demonstrates that the abundance and nature of PRK/GAPDH/CP12 interactions are not equal in all species and that whilst NAD enhances complex formation in some species, this is not sufficient for complex formation in others. Furthermore, it is shown that the GAPDH mono-enzyme complex is more abundant as a 2(A2B2) complex, rather than the larger 4(A2B2) complex. This smaller complex is sensitive to cellular metabolites indicating that it is an important regulatory isoform of GAPDH. This comparative study has highlighted considerable heterogeneity in PRK and GAPDH protein interactions between closely related species and the possible underlying physiological basis for this is discussed. © 2011 The Author(s)
Role of tyrosine M210 in the initial charge separation of reaction centers of Rhodobacter sphaeroides
Femtosecond spectroscopy was used in combination with site-directed mutagenesis to study the
influence of tyrosine M210 (YM210) on the primary electron transfer in the reaction center of Rhodobacter
sphaeroides. The exchange of YM210 to phenylalanine caused the time constant of primary electron transfer
to increase from 3.5 f 0.4 ps to 16 f 6 ps while the exchange to leucine increased the time constant even
more to 22 f 8 ps. The results suggest that tyrosine M210 is important for the fast rate of the primary
electron transfer
Haloquadratum walsbyi : Limited Diversity in a Global Pond
BACKGROUND: Haloquadratum walsbyi commonly dominates the microbial flora of hypersaline waters. Its cells are extremely fragile squares requiring >14%(w/v) salt for growth, properties that should limit its dispersal and promote geographical isolation and divergence. To assess this, the genome sequences of two isolates recovered from sites at near maximum distance on Earth, were compared. PRINCIPAL FINDINGS: Both chromosomes are 3.1 MB in size, and 84% of each sequence was highly similar to the other (98.6% identity), comprising the core sequence. ORFs of this shared sequence were completely synteneic (conserved in genomic orientation and order), without inversion or rearrangement. Strain-specific insertions/deletions could be precisely mapped, often allowing the genetic events to be inferred. Many inferred deletions were associated with short direct repeats (4-20 bp). Deletion-coupled insertions are frequent, producing different sequences at identical positions. In cases where the inserted and deleted sequences are homologous, this leads to variant genes in a common synteneic background (as already described by others). Cas/CRISPR systems are present in C23(T) but have been lost in HBSQ001 except for a few spacer remnants. Numerous types of mobile genetic elements occur in both strains, most of which appear to be active, and with some specifically targetting others. Strain C23(T) carries two ∼6 kb plasmids that show similarity to halovirus His1 and to sequences nearby halovirus/plasmid gene clusters commonly found in haloarchaea. CONCLUSIONS: Deletion-coupled insertions show that Hqr. walsbyi evolves by uptake and precise integration of foreign DNA, probably originating from close relatives. Change is also driven by mobile genetic elements but these do not by themselves explain the atypically low gene coding density found in this species. The remarkable genome conservation despite the presence of active systems for genome rearrangement implies both an efficient global dispersal system, and a high selective fitness for this species
- …