144 research outputs found
Synthetic viability genomic screening defines Sae2 function in DNA repair.
DNA double-strand break (DSB) repair by homologous recombination (HR) requires 3' single-stranded DNA (ssDNA) generation by 5' DNA-end resection. During meiosis, yeast Sae2 cooperates with the nuclease Mre11 to remove covalently bound Spo11 from DSB termini, allowing resection and HR to ensue. Mitotic roles of Sae2 and Mre11 nuclease have remained enigmatic, however, since cells lacking these display modest resection defects but marked DNA damage hypersensitivities. By combining classic genetic suppressor screening with high-throughput DNA sequencing, we identify Mre11 mutations that strongly suppress DNA damage sensitivities of sae2∆ cells. By assessing the impacts of these mutations at the cellular, biochemical and structural levels, we propose that, in addition to promoting resection, a crucial role for Sae2 and Mre11 nuclease activity in mitotic DSB repair is to facilitate the removal of Mre11 from ssDNA associated with DSB ends. Thus, without Sae2 or Mre11 nuclease activity, Mre11 bound to partly processed DSBs impairs strand invasion and HR.We thank M.P. Longhese, R. Rothstein and J. Haber for providing strains and plasmids; Sir T. Blundell and T. Ochi for advice on structural biology and for providing comments to the manuscript. Research in the Jackson laboratory is funded by Cancer Research UK Programme Grant C6/A11224, the European Research Council and the European Community Seventh Framework Programme Grant Agreement No. HEALTH‐F2‐2010‐259893 (DDResponse). Core funding is provided by CRUK (C6946/A14492) and the Wellcome Trust (WT092096). SPJ receives his salary from the University of Cambridge, UK, supplemented by CRUK. TO, IG and FP were funded by Framework Programme Grant Agreement No. HEALTH‐F2‐2010‐259893 (DDResponse). FP also received funding from EMBO (Fellowship ALTF 1287‐2011); NG and IS are funded by the Wellcome Trust (101126/Z/13/Z). DJA and TMK were supported by Cancer Research UK and the Wellcome Trust (WT098051). PS and HN were supported by NIH grants RO1ES007061 and K99ES021441, respectively.This is the final version. It was first published by EMBO at http://emboj.embopress.org/content/early/2015/04/21/embj.201590973.lon
Synthetic viability genomic screening defines Sae2 function in DNA repair.
DNA double-strand break (DSB) repair by homologous recombination (HR) requires 3' single-stranded DNA (ssDNA) generation by 5' DNA-end resection. During meiosis, yeast Sae2 cooperates with the nuclease Mre11 to remove covalently bound Spo11 from DSB termini, allowing resection and HR to ensue. Mitotic roles of Sae2 and Mre11 nuclease have remained enigmatic, however, since cells lacking these display modest resection defects but marked DNA damage hypersensitivities. By combining classic genetic suppressor screening with high-throughput DNA sequencing, we identify Mre11 mutations that strongly suppress DNA damage sensitivities of sae2∆ cells. By assessing the impacts of these mutations at the cellular, biochemical and structural levels, we propose that, in addition to promoting resection, a crucial role for Sae2 and Mre11 nuclease activity in mitotic DSB repair is to facilitate the removal of Mre11 from ssDNA associated with DSB ends. Thus, without Sae2 or Mre11 nuclease activity, Mre11 bound to partly processed DSBs impairs strand invasion and HR.We thank M.P. Longhese, R. Rothstein and J. Haber for providing strains and plasmids; Sir T. Blundell and T. Ochi for advice on structural biology and for providing comments to the manuscript. Research in the Jackson laboratory is funded by Cancer Research UK Programme Grant C6/A11224, the European Research Council and the European Community Seventh Framework Programme Grant Agreement No. HEALTH‐F2‐2010‐259893 (DDResponse). Core funding is provided by CRUK (C6946/A14492) and the Wellcome Trust (WT092096). SPJ receives his salary from the University of Cambridge, UK, supplemented by CRUK. TO, IG and FP were funded by Framework Programme Grant Agreement No. HEALTH‐F2‐2010‐259893 (DDResponse). FP also received funding from EMBO (Fellowship ALTF 1287‐2011); NG and IS are funded by the Wellcome Trust (101126/Z/13/Z). DJA and TMK were supported by Cancer Research UK and the Wellcome Trust (WT098051). PS and HN were supported by NIH grants RO1ES007061 and K99ES021441, respectively.This is the final version. It was first published by EMBO at http://emboj.embopress.org/content/early/2015/04/21/embj.201590973.lon
On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2
Heine T, Zimmerling J, Ballmann A, et al. On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. 2018;84(9): 16.Among bacteria, only a single styrene-specific degradation pathway has been reported so far. It comprises the activity of styrene monooxygenase, styrene oxide isomerase, and phenylacetaldehyde dehydrogenase, yielding phenylacetic acid as the central metabolite. The alternative route comprises ring-hydroxylating enzymes and yields vinyl catechol as central metabolite, which undergoes meta-cleavage. This was reported to be unspecific and also allows the degradation of benzene derivatives. However, some bacteria had been described to degrade styrene but do not employ one of those routes or only parts of them. Here, we describe a novel "hybrid" degradation pathway for styrene located on a plasmid of foreign origin. As putatively also unspecific, it allows metabolizing chemically analogous compounds (e.g., halogenated and/or alkylated styrene derivatives). Gordonia rubripertincta CWB2 was isolated with styrene as the sole source of carbon and energy. It employs an assembled route of the styrene side-chain degradation and isoprene degradation pathways that also funnels into phenylacetic acid as the central metabolite. Metabolites, enzyme activity, genome, transcriptome, and proteome data reinforce this observation and allow us to understand this biotechnologically relevant pathway, which can be used for the production of ibuprofen. IMPORTANCE The degradation of xenobiotics by bacteria is not only important for bioremediation but also because the involved enzymes are potential catalysts in biotechnological applications. This study reveals a novel degradation pathway for the hazardous organic compound styrene in Gordonia rubripertincta CWB2. This study provides an impressive illustration of horizontal gene transfer, which enables novel metabolic capabilities. This study presents glutathione-dependent styrene metabolization in an (actino-) bacterium. Further, the genomic background of the ability of strain CWB2 to produce ibuprofen is demonstrated
APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment
Faithful chromosome segregation during mitosis depends on the Spindle Assembly Checkpoint (SAC) that monitors kinetochore attachment to the mitotic spindle. Unattached kinetochores generate mitotic checkpoint proteins complexes (MCCs) that bind and inhibit the Anaphase Promoting Complex/Cyclosome (APC/C). How the SAC proficiently inhibits the APC/C but still allows its rapid activation when the last kinetochore attaches to the spindle is important to understand how cells maintain genomic stability. We show that the APC/C subunit APC15 is required for the turnover of the APC/C co-activator Cdc20 and release of MCCs during SAC signalling but not for APC/C activity per se. In the absence of APC15, MCCs and ubiquitylated Cdc20 remain ‘locked’ onto the APC/C, which prevents the ubiquitylation and degradation of Cyclin B1 when the SAC is satisfied. We conclude that APC15 mediates the constant turnover of Cdc20 and MCCs on the APC/C to allow the SAC to respond to the attachment state of kinetochores
Small-molecule-induced DNA damage identifies alternative DNA structures in human genes.
Guanine-rich DNA sequences that can adopt non-Watson-Crick structures in vitro are prevalent in the human genome. Whether such structures normally exist in mammalian cells has, however, been the subject of active research for decades. Here we show that the G-quadruplex-interacting drug pyridostatin promotes growth arrest in human cancer cells by inducing replication- and transcription-dependent DNA damage. A chromatin immunoprecipitation sequencing analysis of the DNA damage marker γH2AX provided the genome-wide distribution of pyridostatin-induced sites of damage and revealed that pyridostatin targets gene bodies containing clusters of sequences with a propensity for G-quadruplex formation. As a result, pyridostatin modulated the expression of these genes, including the proto-oncogene SRC. We observed that pyridostatin reduced SRC protein abundance and SRC-dependent cellular motility in human breast cancer cells, validating SRC as a target of this drug. Our unbiased approach to define genomic sites of action for a drug establishes a framework for discovering functional DNA-drug interactions
Zeitschriften fuer Sozialarbeit und verwandte Gebiete aus den Jahren 1945-1950
SIGLEUuStB Koeln(38)-890106635 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
Immunophenotypic analysis of erythroid dysplasia in myelodysplastic syndromes. A report from the IMDSFlow working group
Contains fulltext :
189908.pdf (publisher's version ) (Open Access
- …