1,060 research outputs found

    Widespread Layers in Arabia Terra: Implications for Martian Geologic History

    Get PDF
    Layered rocks in Arabia Terra have been the focus of several recent papers. Studies have focused on the layers found in crater basins located in the southwest portion of the region. However, Mars Orbiter Camera (MOC) images have identified layered deposits across the region. Terrestrial layered rocks are usually sedimentary, and often deposited in water. Thus extensive layered sequences in Arabia Terra may indicate locations of past, major depositional basins on Mars. Other mechanisms can also create layered rocks, or the appearance of layered rocks, including volcanism (both lava flows and ash falls), wind-blown deposits, and wave-cut terraces at shorelines. By identifying where in the region layers occur, and classifying the layers according to morphology and albedo, past depositional environments may be identified. Arabia Terra is characterized by heavily cratered Noachian plains, as well as a rise from -4000 m in the northwest to 4000 m in the southeast (Mars Orbital Laser Altimeter [MOLA] datum). This slope may have provided a constraint on sediment deposition and thus layer formation. While most of the region is Noachian in age, a significant percentage of the area is identified as Hesperian. Although the history of the Arabia Terra initially seems to be straightforward cratered plains with several younger units atop them analysis of high-resolution imagery may reveal a more complex history

    Rover Exploration of Acidalia Mensa and Acidalia Planitia: Probing Mud Volcanoes to Sample Buried Sediments and Search for Ancient and Extant Life

    Get PDF
    Here we develop a plan to explore mud volcanoes near Acidalia Mensa with an MSL-class rover and propose a traverse based on geologic observations

    Regional Mapping and Spectral Analysis of Mounds in Acidalia Planitia, Mars

    Get PDF
    Acidalia Planitia is a approx.3000 km diameter planum located in the northern plains of Mars. It is believed to be a sedimentary basin containing an accumulation of sediments brought by Hesperian outflow channels that drained the Highlands. A large number of high-albedo mounds have been identified across this basin [1-2] and understanding the process that formed them should help us understand the history of this region. Farrand et al. [2] showed that the mounds are dark in THEMIS (Thermal Emission Imaging System) nighttime IR (infrared) image data. This implies that the mounds have a lower thermal inertia than the surrounding plains (Fig. 1), suggesting that the material of the mounds is fine-grained or unconsolidated. Farrand et al. [2] also reviewed potential analogs for the mounds and concluded that a combination of mud volcanoes with evaporites around geysers or springs is most consistent with all the data. We have built on this work by creating regional maps of the features and analyzing CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) data to see if there are mineralogical differences between the mounds and surrounding plains

    Candidate Landing Site for the Mars Science Laboratory: Vernal Crater, S.W. ARabia Terra

    Get PDF
    In the fall of 2009, the Mars Science Laboratory (MSL) will be launched to Mars. The purpose of this mission is to assess biologic potential and geology and to investigate planetary processes of relevance to past habitability. MSL will be able to provide visual, chemical, radiation, and environmental data with its suite of instruments [1]. In order to be selected for the MSL landing site, certain engineering requirements must be met [1] and the area should contain geologic features suggestive of past habitability, so that the overriding science goal of the mission will be attained. There are a total of 33 proposed landing sites as of the first MSL Landing Site Workshop held in Pasadena, CA from May 31st to June 2nd, 2006 [1]. There will be an opportunity to gather high resolution visual and hyperspectral data on all proposed landing sites from the now-orbiting Mars Reconnaissance Orbiter (MRO) which entered martian orbit and began its main science phase in November of 2006 [2]. The data being gathered are from: the high resolution imaging science experiment (HiRISE), the context (CTX) camera and the compact reconnaissance imaging spectrometer (CRISM) onboard the spacecraft. The footprints of these instruments are centered on a single point, and each proposer must submit these coordinates, along with the coordinates of the proposed landing ellipse. Data from these instruments, along with new MOC images and THEMIS mosaics, will be used to enhance our understanding of the geologic and engineering parameters of each site

    'Nano' Morphology and Element Signatures of Early Life on Earth: A New Tool for Assessing Biogenicity

    Get PDF
    The relatively young technology of NanoSIMS is unlocking an exciting new level of information from organic matter in ancient sediments. We are using this technique to characterize Proterozoic organic material that is clearly biogenic as a guide for interpreting controversial organic structures in either terrestrial or extraterrestrial samples. NanoSIMS is secondary ion mass spectrometry for trace element and isotope analysis at sub-micron resolution. In 2005, Robert et al. [1] combined NanoSIMS element maps with optical microscopic imagery in an effort to develop a new method for assessing biogenicity of Precambrian structures. The ability of NanoSIMS to map simultaneously the distribution of organic elements with a 50 nm spatial resolution provides new biologic markers that could help define the timing of life s development on Earth. The current study corroborates the work of Robert et al. and builds on their study by using NanoSIMS to map C, N (as CN), S, Si and O of both excellently preserved microfossils and less well preserved, non-descript organics in Proterozoic chert from the ca. 0.8 Ga Bitter Springs Formation of Australia

    Layered Sediments, Rampart Craters, and Potential Fluvio-Lacustrine Activity in S.W. Arabia Terra, Mars: Support for a History of Aqueous Conditions

    Get PDF
    Arabia Terra is a unique area on Mars in that it is the only major, equatorial region characterized by high abundances of near-surface water (as measured by gamma ray and neutron spectroscopy). Vernal Crater is a 55 km-diameter structure in southwest Arabia Terra, centered at 6 N, 355.5 E. The crater includes layered sediments, potential remnants of fluvio-lacustrine activity, and indications of aeolian processes. Regional considerations, along with new THEMIS and MOC data, are being assessed to gain insight into the significance of the geomorphic units within Vernal Crater and the geologic history of SW Arabia Terra

    Diversification in the Archean Biosphere: Insight from NanoSIMS of Microstructures in the Farrel Quartzite of Australia

    Get PDF
    The nature of early life on Earth is difficult to assess because potential Early Archean biosignatures are commonly poorly preserved. Interpretations of such materials have been contested, and abiotic or epigenetic derivations have been proposed (summarized in [1]). Yet, an understanding of Archean life is of astrobiological importance, as knowledge of early evolutionary processes on Earth could provide insight to development of life on other planets. A recently-discovered assemblage of organic microstructures in approx.3 Ga charts of the Farrel Quartzite (FQ) of Australia [2-4] includes unusual spindle-like forms and a variety of spheroids. If biogenicity and syngeneity of these forms could be substantiated, the FQ assemblage would provide a new view of Archean life. Our work uses NanoSIMS to further assess the biogenicity and syngeneity of FQ microstructures. In prior NanoSIMS studies [5-6], we gained an understanding of nano-scale elemental distributions in undisputed microfossils from the Neoproterozoic Bitter Springs Formation of Australia. Those results provide a new tool with which to evaluate poorly preserved materials that we might find in Archean sediments and possibly in extraterrestrial materials. We have applied this tool to the FQ forms

    Toward Lower Organic Environments in Astromaterial Sample Curation for Diverse Collections

    Get PDF
    Great interest was taken during the frenzied pace of the Apollo lunar sample return to achieve and monitor organic cleanliness. Yet, the first mission resulted in higher organic contamination to samples than desired. But improvements were accomplished by Apollo 12 [1]. Quarantine complicated the goal of achieving organic cleanliness by requiring negative pressure glovebox containment environments, proximity of animal, plant and microbial organic sources, and use of organic sterilants in protocols. A special low organic laboratory was set up at University of California Berkeley (UCB) to cleanly subdivide a subset of samples [2, 3, 4]. Nevertheless, the basic approach of handling rocks and regolith inside of a positive pressure stainless steel glovebox and restrict-ing the tool and container materials allowed in the gloveboxes was established by the last Apollo sample re-turn. In the last 40 years, the collections have grown to encompass Antarctic meteorites, Cosmic Dust, Genesis solar wind, Stardust comet grains and Hayabusa asteroid grains. Each of these collections have unique curation requirements for organic contamination monitor-ing and control. Here is described some changes allowed by improved technology or driven by changes in environmental regulations and economy, concluding with comments on organic witness wafers. Future sample return missions (OSIRIS-Rex; Mars; comets) will require extremely low levels of organic contamination in spacecraft collection and thus similarly low levels in curation. JSC Curation is undertaking a program to document organic baseline levels in current operations and devise ways to reduce those levels

    Looking Towards Curiosity's Canyon Path: a 4 km Sequence of Gully, Debris Deposits, and Fan/Deltas Which are Bordered by a Sloping Bedform-Capped Plain and Crossed by Lake Shorelines

    Get PDF
    The Curiosity Rover is headed towards layered outcrops that appear to be rich in phyllosilicates and sulphates with the expectation of an eventual ascent up Mt. Sharp. One likely will take the rover up a well-defined canyon. Inspection of CTX and HiRISE imagery and topography (5 m contour intervals) reveal a rich geomorphic sequence that may be encountered during the journey

    Conflicting estimates of natural geologic methane emissions

    Get PDF
    Global bottom-up and top-down estimates of natural, geologic methane (CH4) emissions (average approximately 45 Tg yr–1) have recently been questioned by near-zero (approximately 1.6 Tg yr–1) estimates based on measurements of 14CH4 trapped in ice cores, which imply that current fossil fuel industries' CH4 emissions are underestimated by 25%–40%. As we show here, such a global near-zero geologic CH4 emission estimate is incompatible with multiple independent, bottom-up emission estimates from individual natural geologic seepage areas, each of which is of the order of 0.1–3 Tg yr–1. Further research is urgently needed to resolve the conundrum before rejecting either method or associated emission estimates in global CH4 accounting
    • …
    corecore