3 research outputs found

    Distance sampling with a random scale detection function

    Get PDF
    Cornelia Oedekoven was supported by a studentship jointly funded by the University of St Andrews and EP-SRC, through the National Centre for Statistical Ecology (EP-SRC Grant EP/C522702/1). Hans Skaug thanks the Center for Stock Assessment Research for facilitating his visit to University of California, Santa Cruz.Distance sampling was developed to estimate wildlife abundance from observational surveys with uncertain detection in the search area. We present novel analysis methods for estimating detection probabilities that make use of random effects models to allow for unmodeled heterogeneity in detection. The scale parameter of the half-normal detection function is modeled by means of an intercept plus an error term varying with detections, normally distributed with zero mean and unknown variance. In contrast to conventional distance sampling methods, our approach can deal with long-tailed detection functions without truncation. Compared to a fixed effect covariate approach, we think of the random effect as a covariate with unknown values and integrate over the random effect. We expand the random scale to a mixed scale model by adding fixed effect covariates. We analyzed simulated data with large sample sizes to demonstrate that the code performs correctly for random and mixed effect models. We also generated replicate simulations with more practical sample sizes (∼100) and compared the random scale half-normal with the hazard rate detection function. As expected each estimation model was best for different simulation models. We illustrate the mixed effect modeling approach using harbor porpoise vessel survey data where the mixed effect model provided an improved model fit in comparison to a fixed effect model with the same covariates. We propose that a random or mixed effect model of the detection function scale be adopted as one of the standard approaches for fitting detection functions in distance sampling.PostprintPeer reviewe

    Using Hierarchical Centering to Facilitate a Reversible Jump MCMC Algorithm for Random Effects Models

    Get PDF
    The first author was supported by a studentship jointly funded by the University of St Andrews and EPSRC, through the National Centre for Statistical Ecology (EPSRC grant EP/C522702/1), with subsequent funding from EPSRC/NERC grant EP/I000917/1.Hierarchical centering has been described as a reparameterization method applicable to random effects models. It has been shown to improve mixing of models in the context of Markov chain Monte Carlo (MCMC) methods. A hierarchical centering approach is proposed for reversible jump MCMC (RJMCMC) chains which builds upon the hierarchical centering methods for MCMC chains and uses them to reparameterize models in an RJMCMC algorithm. Although these methods may be applicable to models with other error distributions, the case is described for a log-linear Poisson model where the expected value λλ includes fixed effect covariates and a random effect for which normality is assumed with a zero-mean and unknown standard deviation. For the proposed RJMCMC algorithm including hierarchical centering, the models are reparameterized by modelling the mean of the random effect coefficients as a function of the intercept of the λλ model and one or more of the available fixed effect covariates depending on the model. The method is appropriate when fixed-effect covariates are constant within random effect groups. This has an effect on the dynamics of the RJMCMC algorithm and improves model mixing. The methods are applied to a case study of point transects of indigo buntings where, without hierarchical centering, the RJMCMC algorithm had poor mixing and the estimated posterior distribution depended on the starting model. With hierarchical centering on the other hand, the chain moved freely over model and parameter space. These results are confirmed with a simulation study. Hence, the proposed methods should be considered as a regular strategy for implementing models with random effects in RJMCMC algorithms; they facilitate convergence of these algorithms and help avoid false inference on model parameters.PostprintPeer reviewe
    corecore