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Abstract4

Distance sampling was developed to estimate wildlife abundance from observational surveys with5

uncertain detection in the search area. We present novel analysis methods for estimating detection6

probabilities that make use of random effects models to allow for unmodeled heterogeneity in detection.7

The scale parameter of the half-normal detection function is modeled by means of an intercept plus8

an error term varying with detections, normally distributed with zero mean and unknown variance. In9

contrast to conventional distance sampling methods, our approach can deal with long-tailed detection10

functions without truncation. Compared to a fixed effect covariate approach, we think of the random11

effect as a covariate with unknown values and integrate over the random effect. We expand the random12

scale to a mixed scale model by adding fixed effect covariates.13

We analyzed simulated data with large sample sizes to demonstrate that the code performs correctly14

for random and mixed effect models. We also generated replicate simulations with more practical sample15

sizes (˜100) and compared the random scale half-normal with the hazard rate detection function. As16

expected each estimation model was best for different simulation models. We illustrate the mixed effect17

modeling approach using harbor porpoise vessel survey data where the mixed effect model provided18

an improved model fit in comparison to a fixed effect model with the same covariates. We propose19

that a random or mixed effect model of the detection function scale be adopted as one of the standard20

approaches for fitting detection functions in distance sampling.21

Keywords: Abundance estimation AD Model Builder Half-normal Harbor porpoise detections Het-22

erogeneity in detection probabilities Mixed effects23

1 Introduction24

Distance sampling was developed to estimate wildlife abundance from observational surveys with visibility25

bias (Buckland et al., 2001). This visibility bias may occur in the case that the observer misses objects26

within the search area owing to imperfect detection. In this paper we present novel analysis methods for27
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estimating detection probabilities that make use of random effects models.28

The two most common distance sampling methods are line and point transect sampling. For line transects,29

the observer travels down the line and records all perpendicular distances from the line to the detections of30

the species of interest. For point transects, the observer remains at the point for a fixed amount of time and31

records all radial distances from the point to the detections of the species of interest. For brevity, we will32

speak of objects below where each object may consist of single animals (or plants) or clusters of these. Here,33

we assume that all objects on the line or point are detected with certainty.34

Using conventional distance sampling (CDS) methods, the first step of analyzing distance sampling data35

generally consists of fitting a probability density function (pdf) f(x) to the sample of observed distances to36

infer the detection probability (Buckland et al., 2001). This function is determined by g(x) and h(x), where37

g(x) is the probability of seeing an object at distance x given the object is at that distance and h(x) is the38

probability that the object is at distance x. The pdf f(x) is given by:39

f(x) =
g(x)h(x)´
g(u)h(u)du

,

which is the probability density for seeing an object at x conditional on the fact that it was seen somewhere.40

Random placement of a sufficiently large number of lines or points within the study area allows us to assume41

a uniform distribution of objects locally at the line or points. For lines, this means that h(x) = 1/w where w42

is the strip half-width and for points h(x) = 2πx/(πw2) where w is the radius of the circle. Misspecification43

of h(x) can be caused e.g., by presuming randomly placed transects while surveying along linear features44

such as roadsides where animals are not evenly distributed with increasing distance from the line. This can45

lead to bias in estimating detection probability and, hence, to bias in estimating abundance (Marques et al.,46

2010). However, from here on, we will refer to line transect sampling although the methods we describe are47

the same for points with the adjustment for a different h(x). With h(x) = 1/w, f(x) simplifies to48

f(x) =
g(x)´ w

0
g(u)du

. (1)

With the additional assumption that detection at x=0 is perfect (i.e. g(0)=1), f(x) evaluated at distance49

zero is given by:50

f(0) =
1´ w

0
g(u)du

. (2)

For n observations from strips of total length L and width 2w, the estimator of object density within the51

total search area is:52
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D =
n

2wLp
=

n

2wL
´ w

0
g(u) 1

wdu
=
nf(0)

2L
, (3)

where p =
´ w

0
g(u) 1

wdu is the average detection probability. Note that n refers to the number of detected53

objects. In the case that objects consist of clusters of size larger than one, eq (3) needs to be multiplied with54

the expected cluster size to estimate density of individuals. Using the design-based approach from Buckland55

et al. (2001), object abundance in the study area may be obtained by multiplying D from eq (3) with the56

size of the study area. The quantity µ =
´ w

0
g(u)du = wp is called the effective strip width (ESW), but is57

actually a half-strip width for each side of the line.58

However, when not considering cluster size, p is the only quantity from eq (3) that requires estimation,59

while n, w and L are known. Hence, it is important to fit a flexible detection function that allows reliable60

estimation of p. Using CDS methods, this was generally accomplished by comparing the fits of multiple61

key-adjustment term combinations (see section 2 for details). However, two main methods have been devel-62

oped that allow modeling heterogeneity in detection probabilities by including observable covariates in the63

detection function model (Marques and Buckland, 2003) or by using mixture models (Miller and Thomas,64

submitted).65

In the following we begin by summarizing and comparing these existing methods for fitting detection66

functions (section 2). This sets the stage for section 3.1 where we propose a new method, i.e. the random scale67

detection function. We discuss the likelihood for this function (section 3.2) and expand the random scale68

to a mixed scale model (section 3.3). Furthermore, we demonstrate our proposed methods in a simulation69

study (section 4) and apply the mixed effect approach to harbor porpoise (Phocoena phocoena) detections70

in comparison to the equivalent fixed effect approach (section 5).71

2 Existing methods for fitting flexible detection functions72

Currently there are three primary ways to fit detection functions for distance sampling data. The most73

common is the key function and adjustment series described in Buckland et al. (2001). The general formula74

is:75

g(x) =
k(x)(1 +

∑m
j=1 ajpj(x))

k(0)(1 +
∑m
j=1 ajpj(0))

where k(x) is a key function, pj(x) is a series of adjustment functions with coefficients aj and m the total76

number of adjustment terms fitted. The denominator scales the function such that g(0)=1 although this77

denominator is not necessary for fitting because it cancels in eq (1). An example is a half-normal key function78
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and a cosine adjustment series79

g(x) =
exp(−(x/γ)2/2)(1 +

∑m
j=1 aj cos(jπx/w))

(1 +
∑m
j=1 aj)

where γ is the scale parameter of the half-normal key function. This key-adjustment approach allows for80

flexible fitting to the observed distances. It does, however, require defining a truncation width (w), imposing81

non-linear constraints to maintain monotonicity (i.e. g(x1) ≥ g(x2) for all w ≥ x2 > x1) and ensuring that82

1 ≥ g(x) > 0. In addition, it has been shown that fitting of detection functions with long tails is problematic83

with this approach.84

A second approach is to include a vector of explanatory covariates z in the scale parameter of the half-85

normal or hazard-rate detection function (Marques and Buckland, 2003). An example using a half-normal86

detection function is:87

g(x|z) = exp(−[x/ exp(z′β)]2/2) (4)

where z′ denotes the vector transpose and β is a parameter vector of the same length as z. In comparison to88

the previous approach, no adjustment series need be used and the single parameter scale of the half-normal89

function (or the hazard-rate) is replaced with exp(z′β). Hence, the scale of the detection function is adjusted90

for each detected object depending on the observed covariate values during the detection.91

The model in eq (4) is conditional on z; hence, it is essential that z is independent of x (i.e., h(x|z) = h(x))92

(Borchers and Burnham, 2004). An obvious example where this fails is animal behavior that might differ with93

x (e.g. responsive movement of the animals to the observer). This approach provides monotone detection94

functions without constraints, does not require truncation and is suitable for fitting long tails. It has the95

added advantage of providing better small-area estimates of density when the covariates vary spatially96

(Hedley and Buckland, 2004). On the other hand, the covariate approach does depend on being able to97

identify and measure covariates that affect detection probability (Marques and Buckland, 2003; Marques98

et al., 2007).99

If there is any remaining lack of fit, the first and second approaches can be combined using covariates in100

the key function and a series adjustment (Marques et al., 2007, e.g.). However, it is then subject to the same101

problems as the key-adjustment approach where the constraints may become even more problematic as they102

depend on the explanatory covariate values. Even if the function is constrained correctly for all observed103

values of z, predictions for unobserved values of z may yield invalid probabilities due to the addition of104

adjustment functions.105
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The third approach is rather recent and involves fitting a mixture of m detection functions (Miller and106

Thomas, submitted) along the lines of Pledger (2000) for capture-recapture models. Here, the detection107

function can be represented as:108

g(x) =

m∑
j=1

πjg
′
j(x)

where
∑m
j=1 πj = 1 and g′j(x) is a properly specified detection function. As long as each component detection109

function is monotone, g(x) will be monotone.110

3 Random and mixed scale models111

3.1 Random scale detection function112

An additional approach we present here is to use random effects in the detection function scale to allow for113

unmodeled heterogeneity in detection. Consider a half-normal detection function where the scale parameter114

is modeled by means of an intercept β plus an error term ε, varying with detections, normally distributed115

with zero mean and unknown variance (ε ∼ N (0, σε)):116

g(x|ε) = exp(−x2/(2γ(ε)2)). (5)

The scale is now modeled as:117

γ(ε) = exp(β + ε).

We assume a normal distribution for ε and use N(ε, 0, σε) as shorthand for the normal density function118

evaluated at ε with mean zero and standard deviation σε. Considering that long-tails may result from some119

objects with high detection probabilities out to great distances or some conditions under which objects are120

detectable at great distances, we argue that this random scale will be able to cope with long-tailed detection121

functions (i.e. with large values for ε).122

3.2 Likelihood formulation for the random scale model123

Using the random scale detection function, the marginalized likelihood for the sample of n observed distances124

can be derived directly from equations 2.39 and 2.40 in Borchers and Burnham (2004). In comparison with125

the covariate approach using fixed effects from above, we think of the random effect as a covariate with126
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unknown values and integrate over the random effect. This is accomplished by including an integral over127

the unknown random effect in both the numerator and denominator:128

Lg(β, σε) =

n∏
i=1

´∞
−∞ g(xi|ε)N(ε, 0, σε)dε´∞

−∞
´ w

0
g(u|ε)duN(ε, 0, σε)dε

, (6)

where the xi refer to the distances to the detected objects with i = 1, 2, ..., n. We denote Lg with subscript129

g indicating that here we use a properly defined detection function g(x|ε) with g(0) = 1 (for comparison130

see eq (13) Appendix 1, Supporting Information where we present an alternative formulation, Lf where the131

scale mixture is applied to the probability density from eq (1) rather than to the detection function). In132

this formulation (eq (6)) we denote the scale intercept with βg. The numerator of eq (6) is the marginal133

detection function evaluated at xi:134

∞̂

−∞

g(xi|ε)N(ε, 0, σε)dε, (7)

while the denominator of eq (6), divided by w, is the marginal probability that the object was seen within135

truncation width w:136

∞̂

−∞

ˆ w

0

g(u|ε)duN(ε, 0, σε)
1

w
dε. (8)

We note that in contrast to point transects, the availability function for line transects h(x) = 1/w from eqs137

(7) and (8) cancel in eq (6).138

3.3 Mixed scale detection function139

A mixed effects model in which observed covariates (z) are included in the detection function can be ac-140

complished by combining the covariate model from above (eq (4)) with the random scale model (eq (5))141

using:142

γ(ε, z) = exp(z′β + ε). (9)

where z, β and ε are as before. Note that here the intercept β from eq (5) is replaced with z′β. The143

half-normal detection function with a mixed scale can now be written as:144

g(x|z, ε) = exp(−[x/ exp(z′β + ε)]2/2). (10)
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In this case, the likelihood is conditional on the observed covariate values. Building upon the likelihood145

formulation from eq (6), the likelihood for the sample of n observations is now given by:146

Lg(β, σε|z) =

n∏
i=1

´∞
−∞ g(xi|z, ε)N(ε, 0, σε)dε´∞

−∞
´ w

0
g(u|z, ε)duN(ε, 0, σε)dε

(11)

3.4 Density estimators using a random or mixed scale147

Using a random scale detection function, an estimate of object density D can be obtained using eq (8) in148

place of p in eq (3) giving:149

D =
n

2wL
´∞
−∞
´ w

0
g(u|ε)duN(ε, 0, σε)

1
wdε

.

When explanatory covariates are included for the mixed scale approach, the Horvitz-Thompson-like150

estimator (eq 2.44 in Borchers and Burnham, 2004) can be used to estimate object density:151

D =

n∑
i=1

1

2wLpi
=

n∑
i=1

1

2wL
´∞
−∞
´ w

0
g(u|ε, zi)duN(ε, 0, σε)

1
wdε

, (12)

where for each of i = 1, 2, ..., n objects, 1 is divided by the probability that it is detected pi, which are then152

summed up over all n. For the mixed scale approach, the numerator of eq (12) needs to be replaced with153

si, the size of the ith object, in the case that cluster sizes are larger than 1 and density of individuals is154

estimated.155

4 Simulation study156

The R package RandomScale (https://github.com/jlaake/RandomScale) contains code for fitting models157

using maximum likelihood, for plotting the fitted model and for estimating abundance in the covered area158

using eq (12) multiplied by 2wL. Some of the functions of this package are based on the Lg formulation from159

eq (6), while other functions use Lf , where the scale mixture is applied to the probability density from eq (1).160

In Appendix S1 (Supporting Information) we define Lf in eq (13) and provide a proof and simulations that161

show that Lf yields the same MLE as Lg in the case of the half-normal detection function in combination162

with normal random effects; however, Lf was more stable numerically than Lg in our simulations. There is163

no guarantee that Lf will approximate Lg for non-Gaussian detection functions, and the method should be164

regarded as approximate and used with caution in this case.165

The underlying programs used to maximize Lg and Lf were developed with the software package ADMB166
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(Fournier et al., 2012). Lg can also be fitted solely with R code in the package. ADMB allows flexible167

specification with random effects (Fournier et al., 2012). By default ADMB integrates the likelihood using168

the Laplace approximation, but for Lg and Lf it was necessary to use the more accurate Gauss-Hermite169

adaptive quadrature which is also part of ADMB. Some additional C++ code to enable the use of multinomial170

weights with Gauss-Hermite integration for the random effects is contained in the package. With simulation171

we compare the results from the R and ADMB code obtained with the two different formulations (Appendix172

1, Supporting Information). We used examples with simulated data for random and mixed effects with large173

sample sizes so the results and comparisons were only slightly affected by sampling variability (Section 4.1).174

We also provide replicate simulations from various detection functions and compare the results from the175

half-normal random scale detection function with the hazard rate detection function (Section 4.2). All of176

the code used in this manuscript is provided in the package (use help(RandomScale)).177

4.1 Fitting random and mixed scale detection functions178

The following is an example of a mixed effects model that can only be fitted with the ADMB code and Lf179

(see eq (13) Appendix 1, Supporting Information) in the RandomScale package. We simulated distances for180

536 detected objects from a half-normal detection function with random scale (log(σε) = −0.5) truncated181

at w = 50 where the distances of the first 438 detected objects were from a population with N = 2000 with182

a larger scale intercept βg = 2 compared to the last 98 objects from a population of N = 1000 with βg =183

1. The subsets of the data are distinguished by including a two-level factor covariate with values 0 and 1184

for the first and second subset, respectively. All objects have the same random effect distribution. We fit185

models to the data with the covariate (mixed model) and without the covariate (random model), both using186

Lf .187

The fit of the detection functions averaged over all data look similar for both models (Fig. 1) but the188

model with the covariate is clearly better with a 4AIC of 33.34. The estimate of abundance from the model189

with the covariate is 3212 (se=261.6) and without the covariate is 3267 (se=276). For the mixed effect model190

the estimated standard deviation (0.57) is smaller than the same quantity for the random effect model (0.67)191

which absorbs the heterogeneity due to the missing covariate into the random effect.192

The total abundance estimates are similar, but when abundance is estimated for each type of object193

(with covariate: 2176 (se = 182.9) and 1036.1 (se = 155.1); without covariate: 2669 (se = 231) and 597.2194

(se = 70.9) the importance of including the covariate becomes obvious. When using the model with the195

covariate, the model fits tighter to the observed data (Fig. 2) in particular for the subset of the data with the196

smaller sample size, i.e. the subset of the data with covariate value = 1. On the other hand, for the model197
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without the covariate predicted detection probabilities are too low for distances near zero and too high for198

larger distances which results in an underestimate of abundance of those with covariate value 1. Likewise,199

the estimated abundance for objects with covariate value 0 is too high.200

4.2 Simulation comparison with hazard rate201

The random scale half-normal detection function has two parameters and is thus more flexible than a half-202

normal with a single parameter. The hazard rate which is often used to represent detection functions also203

has two parameters, so a simulation comparison of the alternative two-parameter models is worthwhile.204

We simulated data from a t-distribution with 3, 5, and 10 degrees of freedom, also from a random scale205

half-normal (βg = -0.5; σε = 0.5) and from a hazard rate (g(x) = 1 − exp(−(x/σ)−p); σ = 0.7; p = 2.5).206

We simulated 500 replicates for each detection function with expected sample sizes of 60-90 and 130-180 by207

varying the true abundance (N ) for the scenario. The distances were generated using rejection sampling208

with w=40 and the parameters were chosen so the largest observed distance would not exceed 20. The209

number detected (n) and the largest observed distance (w) would vary so they are summarized as means210

in the results (Table 1). For each data set we fit the random scale half-normal with the ADMB code from211

the RandomScale package using Lg eq (6) and Lf (see eq (13) from Appendix 1, Supporting Information)212

and the hazard rate detection function using the mrds package (Laake et al., 2013) using a transect width213

(w) equal to the largest observed distance and twice the largest observed distance to approximate an infinite214

width. We measured the proportion of replicates in which Akaike’s Information Criterion (AIC) was smaller215

for Lg versus Lf and vice versa. Even though they should produce the same likelihood value we have found216

that our ADMB implementation of Lf has better convergence than Lg. We also compared the proportion of217

replicates in which AIC was smaller for Lf versus the hazard rate model. For the random-scale half-normal218

model we computed the percent relative bias (PRB=100(N − N̂)/N) and its simulation standard error and219

root mean squared error (
√

(var(N̂) − (
¯̂
N − N)2) expressed as a percentage of N. We also computed the220

same quantities using the estimate from the model with the smallest AIC for each replicate. In comparing221

abundance estimates to the true value we used N/w which scales with the width of the transect that was222

used.223

As expected, the random scale half-normal and hazard rate did best when the data were generated from224

the fitted model. In general, when generating data under a different distribution, the hazard rate tended225

to underestimate and the random scale half-normal model tended to over-estimate abundance. However,226

when AIC was used to select the best model, the average bias was typically less than 5% and often within227

simulation error. The bias of the average was largest when data were generated from the hazard rate, because228
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the random scale half-normal tended to over-estimate the intercept and abundance because the hazard rate229

detection function has a long tail and then flattens near x=0. For these same scenarios, the ADMB code230

for Lg had substantial problems with convergence in comparison to Lf . In fewer than 0.2% of the 10000231

simulations did the Lg code produce a smaller negative log-likelihood than Lf . When w was set to twice the232

largest observed distance, the random scale half-normal performed better with less bias and the hazard rate233

performed worse with more negative bias except when the hazard rate was used to generate the simulated234

distances. In real data applications we never know the true detection function, so it is useful to have a set235

of models to examine and use a model selection criterion like AIC.236

5 Application to harbor porpoise data237

In 2002, a small boat survey for harbor porpoise (Phocoena phocoena) was conducted in waters of the Strait238

of Juan de Fuca and around the San Juan Islands in Washington state, USA. Three observers surveyed along239

a set of systematically placed lines with an observer standing on the bow and at the starboard and port240

sides. When harbor porpoise were detected, the angle from the line to the harbor porpoise was measured241

with an angle board and the radial distance to the detection was estimated visually. Observers were trained242

and tested in visual distance estimation but for this example, we ignore the error in distance estimation.243

The angle and radial distance was converted to perpendicular distance. In addition to distance, the number244

of harbor porpoise (size) was recorded for each detection.245

A total of 477 harbor porpoise groups were detected with group size varying from 1 to 6. We fitted a246

model with a half-normal detection function and used group size as a covariate. We fitted a fixed effect247

detection function with the mrds package (Laake et al. 2013) and a mixed effects detection function with the248

RandomScale package. The mrds package requires a finite width, so to make the AIC values equivalent we249

set w=443.2 the largest distance for each analysis. The fit of the detection functions (Table 2) look similar250

(Fig. 3) but the model that includes the random effect is slightly better with a 4AIC of 2.6. The estimate251

of harbor porpoise group abundance within the 886.4 meter strip is 1243 (se = 59) for the fixed effect model252

and 1360 (se = 93) for the mixed effect model. The higher abundance estimate resulted from the slightly253

steeper estimated detection function (Fig. 3).254

6 Discussion255

Incorporating a random effect in the scale of the detection function extends the covariate approach of256

Marques and Buckland (2003) to enable modeling of additional unspecified and typically unknown sources257
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of heterogeneity in detection probability. This removes the need to select an arbitrary truncation width258

which is typically needed for the CDS key-adjustment function fitting (Buckland et al., 2001). The random259

and mixed effects modeling can be used with other detection functions such as the hazard function (Buckland260

et al., 2001) as long as the parametrization includes a scale parameter (x/σ); although it could also be applied261

to the shape parameter in the hazard function. The models can be easily extended to allow covariates to be262

included for the random effects standard deviation σε. For example, heterogeneity in detection probability263

may be enhanced or reduced as a function of weather, habitat or other covariates. We propose that a random264

or mixed effect model of the detection function scale be adopted as one of the standard approaches for fitting265

detection functions in distance sampling.266
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t(df=3) 6.86 68.18 15.08 -3.78 2.11 1.34 0.29 0.10 0.00 23.95 33.18 30.01
13.63 68.18 8.84 -10.11 0.43 1.13 0.57 0.10 0.00 21.95 26.57 25.24

t(df=5) 4.32 66.16 11.24 -3.64 1.74 1.14 0.34 0.06 0.01 22.19 27.56 25.66
8.64 66.16 4.51 -11.48 -0.59 1.01 0.70 0.11 0.01 21.69 22.20 22.59

t(df=10) 3.24 63.65 10.92 -1.82 2.37 2.55 0.34 0.03 0.00 23.77 27.04 25.58
6.48 63.65 3.62 -12.01 0.00 2.12 0.77 0.08 0.03 21.33 20.14 21.23

hn 4.52 172.60 3.33 -12.28 -2.51 0.69 0.62 0.06 0.00 17.21 14.27 15.68
9.03 172.60 0.02 -16.62 -2.03 0.63 0.89 0.12 0.00 20.11 13.43 14.32

hn 3.79 86.50 8.28 -7.32 -0.80 1.02 0.39 0.04 0.00 20.00 23.58 22.85
7.59 86.50 2.09 -13.69 -1.41 0.91 0.79 0.07 0.00 21.57 19.87 20.47

hz 15.67 183.22 20.22 2.87 3.11 1.09 0.01 0.80 0.00 10.96 28.48 11.34
28.48 183.22 19.44 1.94 4.28 1.30 0.09 0.82 0.00 10.68 27.64 13.72

hz 12.57 91.44 24.97 4.01 5.32 0.87 0.05 0.56 0.00 17.98 35.94 20.17
22.68 91.44 23.32 2.40 5.76 0.90 0.14 0.55 0.00 17.12 34.27 20.93
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Table 2: Parameter estimates, standard errors for fixed (AIC=5375.7) and mixed effect (AIC=5373.1) models
fitted to harbor porpoise vessel survey data.

Fixed-effect Mixed-effect
Estimate Std error Estimate Std error

Intercept 4.772 0.069 4.722 0.096
Size 0.084 0.037 0.088 0.052

log(σε) -1.250 0.304
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Figure 1: Average detection functions fitted to simulated data with ADMB code using Lf (Appendix 1,
Supporting Information) with and without the covariate.
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Figure 2: Detection functions fitted to simulated data with ADMB code using Lf (Appendix 1, Supporting
Information) with (top row of plots) and without the covariate (bottom row of plots) shown for covariate
values 0 and 1.
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Figure 3: Detection functions fitted to harbor porpoise vessel survey data. The upper panel is the mixed
effects model and lower panel is the fixed effects model. Both include group size as a covariate.
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Supporting Information294

Additional Supporting Information may be found in the online version of this article:295

296

Appendix S1: Comparison between two likelihood formulations for the random scale detection function297

298
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